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Abstract: Whole cardiac segmentation in chest CT images is important to identify functional ab-
normalities that occur in cardiovascular diseases, such as coronary artery disease (CAD) detection.
However, manual efforts are time-consuming and labor intensive. Additionally, labeling the ground
truth for cardiac segmentation requires the extensive manual annotation of images by the radiologist.
Due to the difficulty in obtaining the annotated data and the required expertise as an annotator, an
unsupervised approach is proposed. In this paper, we introduce a semantic whole-heart segmenta-
tion combining K-Means clustering as a threshold criterion of the mean-thresholding method and
mathematical morphology method as a threshold shifting enhancer. The experiment was conducted
on 500 subjects in two cases: (1) 56 slices per volume containing full heart scans, and (2) 30 slices
per volume containing about half of the top of heart scans before the liver appears. In both cases,
the results showed an average silhouette score of the K-Means method of 0.4130. Additionally, the
experiment on 56 slices per volume achieved an overall accuracy (OA) and mean intersection over
union (mIoU) of 34.90% and 41.26%, respectively, while the performance for the first 30 slices per
volume achieved an OA and mIoU of 55.10% and 71.46%, respectively.

Keywords: whole cardiac segmentation; chest CT scans; image processing; K-Means clustering;
silhouette score; mathematical morphology method

1. Introduction

Cardiovascular disease (CVD) has been reported as one of the leading causes of death
globally and occurs due to functional abnormalities in the heart and blood vessels [1]. In
2016, according to the World Health Organization (WHO), about 17.9 million people died
from CVDs, which is equivalent to 31% of all global deaths (mainly from stroke and heart
attack) [1]. For instance, one of the CVDs, coronary artery disease (CAD) is a group of
abnormalities in blood vessels supplying the heart muscle [1]. CAD is caused by a surplus
of calcium in the coronary artery trees. Excessive calcium can narrow the arteries and
increase the risk of heart attack [2,3]. Therefore, an early assessment and diagnosis can
significantly reduce the life-threatening nature of this CVD and improve quality of life for
the afflicted patients [2,3]. In modern medical imaging modalities, computed tomography
(CT), magnetic resonance imaging (MRI), and ultrasound are used to assist in identifying
abnormal findings in the human body for early assessment and diagnosis [4–7]. Recently,
the non-gated and non-invasive chest CT has been used to provide potential support
for investigative imaging tests to interpret cardiac function states [8–10]. More detailed
characteristics of chest CT images are described in Appendix A.
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Cardiac segmentation in chest CT images has played a key role in partitioning the
whole chest CT image into a number of anatomically meaningful regions, known as regions
of interest (ROIs). Typically, the anatomical ROIs for cardiac segmentation focus on the four
chambers of the heart—the left ventricle (LV), right ventricle (RV), left atrium (LA) and right
atrium (RA)—or the entire heart anatomy, including the four chambers, coronary arteries
and descending thoracic aorta (DA) [8–10]. The manual process of cardiac segmentation
can be time-consuming and labor intensive for radiologists. To overcome this burden, fully
automatic methods have been proposed by applying computer-aided technologies [1,7–10].
These techniques have been built based on earlier approaches [8] such as graph-based
segmenting [11,12], mean-thresholding [13–17] and fuzzy clustering methods [18–21]. Later,
the deep learning approach showed promising successful performance [7,9,10]. The deep
learning approach has two learning manners, including supervised learning [22–26], which
requires a ground truth to align the loss function, and unsupervised learning [27–29], which
learns the features without ground truth labeling.

Labeling the ground truth for cardiac segmentation requires the extensive manual
annotation of images by the radiologist, which can be time-consuming and labor inten-
sive [7–10,22–26]. Due to the difficulty in obtaining annotated data and the required
expertise as an annotator, an unsupervised approach has been considered in this study.
The goal of cardiac segmentation is to partition the whole chest CT image into cardiac
anatomical ROIs, with respect to not only the dissimilarity of each pixel’s value, but also the
meaningful structure (i.e., geometrical position) of cardiac anatomical ROIs. For example,
the Hounsfield units (the quantitative scale of chest CT images) of heart muscles and other
muscles in the body are in the same range (almost identical). Detailed information of the
Hounsfield unit (HU) of chest CT images is described in Appendix B. Additionally, the
cardiac anatomical substructures (i.e., the four chambers, DA and coronary artery) are
usually formed in one shape that is mostly arranged in the center of a chest CT image [3,30].

Inspired by the performance of the mean-thresholding method [13–17], we adapted it
for this current study by utilizing the K-Means clustering method as a threshold criterion.
The K-Means clustering method [31,32] is a simple unsupervised method, which exploits
Euclidean distances to compute the mean of all given pixels and assigns pixels into k
different clusters based on the nearest mean. However, the anatomical structure of cardiac
tissues and the quantitative scale (i.e., HU) of chest CT images are very complicated for
cardiac segmentation when using the K-Means clustering method directly. Therefore, we
exploited a mathematical morphology method [33,34] to enhance the shifting of the mean
threshold. In this paper, semantic whole-heart segmentation combining K-Means clustering
as a threshold criterion of mean-thresholding and the mathematical morphology method
as a threshold shifting enhancer is proposed. In the proposed approach, the K-Means
method is utilized to automatically cluster pixels, while the mathematical morphology
method is used to remove noise, fill holes and convex hull; also, prior knowledge of chest
anatomical structures [3,30] is required to assist in the awareness of geometrical positions.
The silhouette scoring method [32,35] is applied to evaluate the performance of K-Means
clustering, while overall accuracy (OA) and mean intersection over union (mIoU) are
calculated to evaluate the overall performance of cardiac segmentation.

The remaining parts of the paper are organized as follows. Section 2 describes related
works of earlier approaches, such as graph-based, mean-threshold and fuzzy clustering,
in addition to deep learning approaches such as supervised and unsupervised learning
methods. Section 3 describes a step-by-step hierarchical flow of the proposed methodology.
Experimental results and comparison discussions are analyzed in Sections 4 and 5, respec-
tively. Section 6 concludes our study. Finally, supplemental literature reviews of CT, HU
and algorithm tables are presented in Appendices A–C, respectively.
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2. Related Works

Shi et al. [11] conducted natural image segmentation by proposing a normalized cut
criterion. The method addressed images as a graph partition problem. The normalized
cut was used as a measure of dissimilarity between subgroups of a graph. The eigenvalue
was utilized to minimize the criteria of the normalized cut. Pedro et al. [12] conducted
natural image segmentation through a pairwise region comparison method. The method
also addressed images as a graph partition problem. The greedy decision was used as a
measurement criterion.

Dorin et al. [13] conducted natural image segmentation by proposing a recursive mean
shift procedure to generate M-estimators. The M-estimators were utilized in detecting
the modes of the density. The method produced significant results with a low dimension
of the space. Larrey-Ruiz et al. [14] conducted cardiac segmentation in chest CT images
using multiple threshold values. The thresholding was calculated by the mean value of
statistical local parameters (i.e., pixels are in one slice) and global parameters (i.e., pixels are
across all slices of a full volume). Huo et al. [15] conducted weakly unsupervised cardiac
segmentation as an initial step for coronary calcium detection. The method contained many
unrelated anatomical ROIs, such as the spine, ribs, and muscles. The method was adapted
from Liao et al. [16], utilizing a convex hull of lungs as the base parameters. Rim et al. [17]
conducted whole-heart segmentation by adapting the cardiac segmentation method of
Huo et al. [15] and Liao et al. [16]. The method used an alternative threshold of a convex
hull of lungs and a convex hull of ribs as a base parameter. As the alternative threshold
was manually defined by the mathematical geometry of the lungs, the method is an ad hoc
set of each image.

Radha et al. [18] conducted brain image segmentation using an intelligent fuzzy level
set. Quantum particle swarm optimization was proposed to improve the steadiness and
meticulousness in order to reduce opening sensitivity. The results for this method showed
that it could optimize up to 15% more than the original fuzzy level set method. However,
the method experienced challenges with neoplastic or degenerative ailment images. Ver-
saci et al. [19] conducted image edge detection by proposing a new approach of fuzzy
divergence and fuzzy entropy. The proposed fuzzy entropy used fuzzy divergence as
the distances between fuzzified images, which were computed by means of fuzzy diver-
gence. Chanda et al. [20] conducted cardiac MRI image segmentation using a fuzzy-based
approach. The method was based on morphological, threshold-based segmentation and
fuzzy-based edge detection. The method achieved more than 90% accuracy. Kong et al. [21]
conducted an image segmentation method using an intuitionistic fuzzy C-Means clustering
algorithm. The method defined a modified non-membership function, an initial clustering
center based on grayscale features, an improved nonlinear kernel function and a new
measurement of fuzzy entropy. The method outperformed existing algorithms, but it took
a lot of computational time.

Ronneberger et al. [22] conducted an electron microscopy (EM) image segmentation
using supervised deep learning by defining U-net architecture. The network consisted
of 23 convolutional layers. The experiment was trained with 30 images of size 512 × 512
and received an average IOU of 92%. The U-net model has become the gold standard for
biomedical image segmentation. Payer et al. [23] conducted whole-heart segmentation
using supervised deep learning by defining two-step CNN architecture. The experiment
was trained on CT images with 20 volumes of size 300 × 300 × 188 and achieved an
average dice similarity coefficient of 90.8%. Ahmed et al. [24] conducted whole-heart
segmentation using supervised deep learning by defining a CNN network and using
stacked denoising auto-encoders. The experiment was trained on CT images of eight
subjects and achieved an average accuracy of 93.77%. Liao et al. [25] conducted 3D whole
heart segmentation using supervised deep learning by defining a multi-modality (i.e., CT
and MRI) transfer learning network with adversarial training. The network introduced
the attention mechanism into the U-net network. The experiment was trained on 60 CT
volumes with a dice value of 0.914. Max et al. [26] conducted multi-modality (i.e., CT and
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MRI) 3D whole-heart segmentation using supervised deep learning by defining a shape
encoder–decoder network. The experiment was trained on 15 CT volumes with a dice
value of 0.653.

Xia et al. [27] conducted natural image segmentation using unsupervised deep learn-
ing by defining a W-net architecture. The network was a concatenation of two U-net
networks. The experiment was trained on 11,530 images and achieved a probabilistic rand
index (PRI) of 0.86. Joyce et al. [28] conducted multi-class medical image segmentation
on Myocardium (MYO), left ventricle (LV) and right ventricle (RV) regions using unsu-
pervised deep learning by defining a generative adversarial network (GAN) model. The
experiment was trained on 20 CT volumes with a dice value of 0.51. Perone et al. [29]
conducted medical image segmentation using unsupervised deep learning by defining a
self-ensembling architecture. The experiment was trained on MRI images from 100 subjects
and achieved the best dice value of 0.847.

3. Methodology
3.1. Overall Workflow of the Proposed Method

The segmentation process is intended to generate a binary mask of whole-heart
anatomical ROIs, including the four chambers, coronary arteries, and DA, as shown in
Figures 1–3 and listed in Appendix C. As the cardiac anatomical ROIs are formed in one
shape, arranged mostly in the center of a chest CT image [3,30], a step-by-step hierarchical
process to enhance the mean-threshold method from the corner towards the center region
of the chest CT image is proposed. Firstly, the air substance at the corner of a chest CT
image is filtered by a convex hull of foreground mask. Then, other human body substances
such as fat, muscles and lungs are filtered by a convex hull of lung mask. Finally, the spine
substance is filtered by a convex hull of spine mask. More details of each step are explained
in the following sub-sections.

Figure 1. Overall workflow of the step-by-step hierarchical cardiac segmentation process using K-
Means clustering and mathematical morphology method. Abbreviations: CT, computed tomography;
HU, hounsfield unit.
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Figure 2. Examples of the step-by-step hierarchical process: (a) whole chest CT image; (b) foreground mask; (c) convex hull
of foreground mask; (d) lung mask; (e) convex hull of lung mask; (f) intermediate heart mask; (g) spine mask; (h) convex
hull of spine mask; (i) heart mask; and (j) segmented heart image.
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Figure 3. Examples of intermediate heart segmentation: (a) intermediate heart image; and (b) corresponded frequency histogram.

3.2. Grayscale Conversion

Firstly, the raw CT image is read in HU pixels, which is the standard radio-density
scale. One CT image has a resolution of 512× 512× 1 (i.e., width × height × channels),
with the range around [−1000, +1000]. In the current study, 56 images per volume are
trimmed. Thus, one CT volume is 512× 512× 56 in size. The HU pixels are converted into
grayscale pixels using the standard range normalization, as shown in Equation (1).

X = 255× Y−Ymin
Ymax −Ymin

(1)

where Y is a set of HU pixels, Y ⊂ [−1000,+1000]3D, and X is a set of grayscale pixels,
X ⊂ [0, 255]3D and 3D = 512× 512× 56. Ymin and Ymax are the minimum and maximum
value of HU pixels, respectively. An example of a chest CT image in grayscale pixels is
shown in Figure 2a.

3.3. Convex Hull of Foreground Mask

The K-Means method (known as the unsupervised technique in clustering litera-
ture [31,32]) is used to cluster the whole chest CT image into foreground (i.e., anatomical
ROIs such as fat, muscle, lungs, heart and other) and background (i.e., air) clusters. Given
k = 2 clusters, and the set of X grayscale pixels X ⊂ [0, 255]2D, the k centroid clusters C
are calculated by minimizing the function ∅, as shown in Equation (2).

ci =
1
|Ci | ∑

x∈Ci

x

∅ = ∑
xεX

min
c∈C
‖ x− c ‖2 (2)

where the centroid clusters C = {c1, c2, . . . , ck}. The foreground binary mask F, F ⊂ [0, 1]2D

is the result of the thresholding condition, as shown in Equation (3).

τ = 1
k ∑

j∈k
Cj

F =

{
1 i f X > τ

0 else

(3)

where the foreground threshold τ is calculated by the mean of k centroid clusters C. Lines
randomly situated at the bottom of the chest in the CT images were observed, as shown in
Figure 2a, which are considered as noise. To remove this noise, the morphological binary
opening operation [33,34] ϕ is conducted with the default structure element from [34].
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The operation is iterated twice: F = ϕ(ϕ(F)). Then, the morphological convex hull
operation [33,34] F = ω(F) is adapted to cover all human body substances as foreground,
as shown in Equation (4).

Ai
r =

(
Ai

r−1 ∝ Bi) ∪ F
Di = Ai

r i f Ai
ris equal to Ai

r−1
ω = ∪4

i Di
(4)

where F is the foreground mask and Bi is the default structure elements with i = 1, 2, 3, 4.
Given that Ai

0 is a foreground mask (Ai
0 = F), the Ai

r (where r = 1, 2, 3, . . . ) is iteratively
applied by a hit-or-miss transform ∝ with Bi; and when it converges (i.e., Ai

r is equal to
Ai

r−1), it is united with F, which is referred to as Di. Then, the convex hull ω is a union of
Di. The examples and generation processes of the foreground mask and the convex hull of
foreground mask are shown in Figure 2b,c and Table A2, respectively.

3.4. Convex Hull of Lung Mask

The process of generating a convex hull of lung mask is intended to remove fat, muscle
and rib substances. Firstly, the lung mask is computed. The foreground threshold τ is used
to compute the lung mask. The enhanced grayscale pixels E, E ⊂ [0, 255]2D are computed
to assist the thresholding. Then, the lung mask L, L ⊂ [0, 1]2D is computed as shown in
Equation (5).

E =

{
255 i f F == 0

X else

L =

{
1 i f E < τ

0 else

(5)

There are blood vessels within the lungs, which result in many small holes in lung
mask L. To fill those small holes, the morphological binary closing operation [33,34] θ is
conducted with the default structure element from [34]. The operation is iterated twice:
L = θ(θ(L)). Then, the convex hull of lung mask U, U ⊂ [0, 1]2D is computed by the
morphological convex hull operation [33,34] ω adapted from Equation (4), as shown in
Equation (6).

U = ω(L) (6)

The intermediate heart mask I, I ⊂ [0, 1]2D, is a bitwise AND operation between the
convex hull of lung mask U and an inversion of lung mask L, which is computed as shown
in Equation (7).

I = U & σ(L) (7)

where σ(L) is a bitwise NOT operator: σ(L) = NOT(L). The examples and generation
processes of the lung mask, convex hull of lung mask and intermediate heart mask are
shown in Figure 2d–f and Table A3, respectively.

3.5. Convex Hull of Spine Mask

The process of generating a convex hull of spine mask is intended to remove spine
pixels and other substances under the spine and DA. Firstly, the spine mask is computed.
The enhanced intermediate heart grayscale pixels E, E ⊂ [0, 255]2D are computed to assist
the thresholding, as shown in Figure 3a. Then, the k centroid clusters C of the K-Means
method adapted from Equation (2) are computed to divide the enhanced grayscale pixels
E into background, heart and spine clusters with a value of k = 3. The spine pixels
are brighter compared to the background and heart pixels, as shown in Figure 3a. We
can assume that spine pixels are in the last right cluster in Figure 3b. Therefore, the
spine threshold τ is the maximum centroid of clusters C. Then, the spine binary mask
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S, S ⊂ [0, 1]2D, is a result of a thresholding condition, which is defined as shown in
Equation (8).

E =

{
0 i f I == 0

X else
τ = max

j∈k
(Cj)

S =

{
1 i f E > τ

0 else

(8)

The morphological binary closing θ and opening operation ϕ are applied to fill holes
and remove islands, respectively. Each operation is iterated twice: S = ϕ(ϕ(S)) and then,
S = θ(θ(S)).

The spine mask S does not cover pixels of substances around the spine and under
the DA, as shown in Figure 2g. To remove those pixels, the convex hull of spine mask is
computed. (x0, y0) and (xc, yc), which are denoted as the top and center coordinates of the
white convex polygon in the spine mask S, are computed by the region properties function
ρ and ρ′ from [34]: (x0, y0) = ρ(S) and (xc, yc) = ρ′(S), respectively. Then, the convex
hull of spine mask P, P ⊂ [0, 1]2D, is defined, as shown in Equation (9).

P =

{
1 i f S{y > y0 and x < x0}

S else

P =

{
1 i f P{y′ > yc}

P else

(9)

where x and y are a set of coordinates of spine mask S and y′ is a set of row axes of convex
hull spine mask P. Then, the heart mask H, H ⊂ [0, 1]2D is a bitwise AND operation
between the intermediate heart mask I and an inversion of spine mask convex hull P,
which is computed as shown in Equation (10).

H = I & σ(P) (10)

where σ(P) is a bitwise NOT operator: σ(P) = NOT(P). The examples and generation
processes of the spine mask, convex hull of spine mask and heart mask are shown in
Figure 2g–i and Table A4, respectively.

3.6. Heart Pixel Segmentation

This section explains how to filter the heart image from the heart mask. Given whole
chest HU pixels Y, Y ⊂ [−1000,+1000]2D, and the heart mask H, H ⊂ [0, 1]2D, the
segmented heart pixels Z, Z ⊂ [−1000,+1000]2D are computed as shown in Equation (11).

Z =

{
Y i f H == 1
−1000 else

(11)

The examples and generation processes of segmented heart images are shown in
Figure 2j and Table A5, respectively.

3.7. Convex Hull of Lung Mask Refinement

The proposed segmentation method depends on the convex hull of lung mask, similar
to Huo et al. [14] and Rim et al. [15]. Empirically, when the lungs are not well surrounding
the heart region, the convex hull of lung mask fails to compute intermediate heart mask
I using Equation (7). In this case, the convex hull of lung mask is refined, as shown in
Figure 4. The lungs were observed to vanish little by little from the CT image when the
liver appears. Thus, within 56 slices per CT volume, the last lungs-well-surrounded slice is
recorded and used as the global parameters for the next slice. Then, the local and global
parameters are combined to compute the convex hull of lung mask.
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Figure 4. Examples of refining a convex hull of lung mask: (a) lung mask of the (n−i)th slice; (b) convex hull of the (n−i)th
slice; (c) lung mask of the nth slice; and (d) refined convex hull of lung mask of the nth slice.

Given N is the number of slices in one volume (i.e., N = 56) and y0 is the top row
axis of the white convex polygon in the lung mask Ln−i and Ln , L ⊂ [0, 1]3D, the convex
hull of lung mask U, U ⊂ [0, 1]3D is computed by a bitwise OR operation, as shown in
Equation (12).

Un =

{
Un

∣∣ Un−i i f Ln{y0} > Ln−i{y0}
}

Un else
(12)

where n and (n− i) are the current and the last lungs-well-surrounded slice in N, respec-
tively. The examples and generation processes of the refined convex hull of lung mask are
shown in Figure 4 and Table A6, respectively.

4. Experimental Results
4.1. Experimental Setup

The current experiment was conducted on a Windows 10 computer with an Intel
Core™ i7-9700 CPU @ 3.00 GHZ, 32.0 GB RAM, and an NVIDIA GeForce RTX 2070
graphics card. The code was written in Python language with the Scikit image library [34]
and the K-Mean method of the Scikit learn library [32]. The method was applied on a
dataset from Soonchunhyang University Cheonan Hospital [36]. The dataset was acquired
randomly from 500 subjects who were scanned using a CT scanner (Phillips iCT 256)
during 2019. The chest CT slices were captured in diverse ranges containing between 56 to
84 slices. The first 56 slices were selected for the current study. The resolution of each slice
was the same at 512 × 512 pixels. The FOV was 250 × 250 mm and the slice thickness was
2.5 mm. All data were stored in dicom 3.0 format [37].

4.2. Silhouette Score

The silhouette method [32,35] was applied to score how well the K-Mean method [31,32]
separated the clusters. The formula of the silhouette method is shown in Equation (13).

Score =
b{i} − a{i}

max(a{i}, b{i}) (13)

where a is the average distance from the ith pixel to all pixels in the same cluster and
b is the average distance from ith pixel to all pixels in the closest cluster. The score has
a range of [−1, +1]. If score = −1, it means that the clusters are not well separated. If
score = +1, it means that the clusters are well separated. If score = 0, it means that the
clusters are overlapping.

The evaluation was analyzed on three cases where M denotes the number of images:
(1) the first 30 slices from the 1st to 30th slice: M = 500× 30; (2) the last 36 slices from the
31st to 56th slice: M = 500× 36; and (3) a full volume per subject from the 1st to 56th slice:
M = 500× 56, as shown in Table 1.



Sensors 2021, 21, 2675 10 of 19

Table 1. Silhouette scores for 500 subjects. The shilhouette scores of three cases are described in all
filtering (foreground, spine, and overall foreground and spine filtering).

Min Max Mean ±SD

Foreground filtering
1st to 30th slice 0.0150 0.4341 0.2891 0.0879
31st to 56th slice −0.1002 0.5712 0.2904 0.1050
1st to 56th slice −0.1002 0.5712 0.2903 0.1040
Spine filtering
1st to 30th slice 0.4176 0.6332 0.5367 0.0455
31st to 56th slice 0.3756 0.67359 0.5356 0.0571
1st to 56th slice 0.3756 0.6735 0.5356 0.0565

Overall Foreground and
Spine filtering
1st to 30th slice 0.4176 0.5337 0.4129 0.0605
31st to 56th slice 0.1467 0.6053 0.4130 0.0762
1st to 56th slice 0.1467 0.6053 0.4130 0.0753

The K-Means method was applied twice for foreground filtering and spine filtering
in Equation (2) of Section 3.3 and Equation (8) of Section 3.5, respectively. For foreground
filtering, the K-Means method of the three cases achieved mean scores of 0.2891, 0.2904 and
0.2903, respectively. For spine filtering, the K-Means method of the three cases achieved
mean scores of 0.5367, 0.5356 and 0.5356, respectively. For overall foreground and spine
filtering, the K-Means method for the three cases achieved mean scores of 0.4129, 0.4130
and 0.4130, respectively. We noticed that the K-Means method performed the spine clus-
tering with higher scores than the foreground clustering. Additionally, the K-Means
method achieved almost the same mean scores for all three cases in overall foreground and
spine filtering.

4.3. Human Visual Inspection Evaluation

An intersection over union IoU of each subject, an overall accuracy OA and a mean
intersection over union mIoU were calculated for overall segmentation, as shown in
Equation (14).

IoU = TPn
TPn+FPn+FNn

mIoU = 1
N ∑ IoUn

OA = ∑ TPn
M

(14)

where N is the number of subjects (i.e., 500 subjects) and n is the nth subject in N. M
is the number of images. TP, FP and FN represent number of images of true positives,
false positives and false negatives of the segmentation result, respectively. OA and mIoU
evaluate the overall quality of the segmentation, and the IoU of each subject evaluates the
quality of all images per subject.

Since our segmentation method does not have a ground truth for validating, we
conducted a visual inspection manually in which the human error rate was assumed to be
around 5%. If the segmented image consists of four chambers, the coronary arteries and
the DA, it is considered as a whole-heart segmentation, as shown in Figure 5a,b,e,f,i,j. If
the segmented image consists of four chambers and the coronary arteries but misses DA, it
is considered as a four-chamber segmentation, as shown in Figure 5c,d,g,h,k,l.
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Figure 5. Examples of segmented heart results. (a,b) TP of whole-heart segmentation; (c,d) TP of four-chamber segmentation;
(e,f) FP of whole-heart segmentation; (g,h) FP of four-chamber segmentation; (i,j) FN of whole-heart segmentation; (k,l)
FN of four-chamber segmentation. Abbreviations: IoU, intersection over union; TP, true positive; FP, false positive; FN,
false negative.

For the first 30 slices, the segmentation achieved high performance on both whole-
heart and four-chamber segmentations with OA and mIoU values of 55.10%, 71.46%, 82.62%
and 82.62% respectively, as shown in Table 2. Among the 500 subjects, there were 316
and 341 subjects whose IoU was higher than the mIoU for whole-heart and four-chamber
segmentations, respectively, as shown in Figure 6a,b. Additionally, the minimum and
maximum IoU were 0% and 100%, respectively. Among the 500 subjects, there were 58 and
14 subjects whose IoU was 0%, while there were 234 and 247 subjects whose IoU was 100%
for whole-heart and four-chamber segmentations, respectively, as shown in Figure 6c,d.

For the last 36 slices, the segmentation achieved low performance on both whole-heart
and four-chamber segmentations with OA and mIoU values of 8.37%, 12.60%, 10.35%
and 15.42%, respectively. Among the 500 subjects, there were 198 and 215 subjects whose
IoU was higher than the mIoU for whole-heart and four-chamber segmentation, respec-
tively. Additionally, the minimum and maximum IoU are 0% and 69.23%, respectively.
Among the 500 subjects, there were 222 and 180 subjects whose IoU was 0%, while
there were 1 and 1 subjects whose IoU was 69.23% for whole-heart and four-chamber
segmentation, respectively.
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Table 2. Evaluation results of 500 subjects (%). The OA, mIoU, IoU (min) and IoU (max) of three cases
are described in both segmentations (whole-heart and four-chamber segmentation). Abbreviations:
OA, overall accuracy; mIoU, mean intersection over union; IoU (min), minimum IoU; IoU (max),
maximum IoU.

OA mIoU IoU (min) IoU (max)

Whole-heart
1st to 30th slice 55.10 71.46 0.00 100.00
31st to 56th slice 8.37 12.60 0.00 69.23
1st to 56th slice 34.90 41.26 0.00 85.45
Four-chamber
1st to 30th slice 82.62 82.62 0.00 100.00
31st to 56th slice 10.35 15.42 0.00 69.23
1st to 56th slice 50.91 54.10 0.00 89.13

Figure 6. Number of subjects: (a) whose IoU was lower than the mIoU (blue) and higher than the
mIoU (orange) for whole-heart segmentation; (b) whose IoU was lower than the mIoU (blue) and
higher than the mIoU (orange) of four-chamber segmentation; (c) whose IoU was minimum (blue)
and maximum (orange) for whole-heart segmentation; and (d) whose IoU was minimum (blue) and
maximum (orange) for four-chamber segmentation.
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For the full volume, the segmentation achieved good performance on both whole-
heart and four-chamber segmentations with OA and mIoU values of 34.90%, 41.26%,
50.91% and 54.10%, respectively. Among the 500 subjects, there were 283 and 315 subjects
whose IoU was higher than the mIoU for whole-heart and four-chamber segmentation,
respectively. Additionally, the minimum and maximum IoU were 0%, 0%, 85.45% and
89.13%, respectively. Among the 500 subjects, there were 51 and 11 subjects whose IoU was
0%, while there were 1 and 1 subjects whose IoU was 85.45% and 89.13% for whole-heart
and four-chamber segmentation, respectively.

5. Discussion

Among the mean-thresholding methods proposed by [13–17], there is one paper by
Larrey-Ruiz et al. [14] in which cardiac segmentation on 32 chest CT images was conducted
by defining multiple threshold values. The thresholding was calculated by the mean value
of statistical local parameters (i.e., pixels were in one slice) and global parameters (i.e.,
pixels were across all slices of a whole volume). Table 3 shows comparison results for
the top 32 subjects of our proposed method with Larrey-Ruiz et al. [14] for whole-heart
segmentation. For the first 30 slices, our results outperform Larrey-Ruiz et al. [14] in both
OA and A (max) (maximum accuracy) with values of 100% and 100%, and 94.42% and
99.81%, respectively. For the full volume, Larrey-Ruiz et al. [14] outperforms our method
in OA with values of 87.64% and 73.66%, respectively. However, our method outperforms
Larrey-Ruiz et al. [14] in A (min) with values of 67.85% and 46.95%, respectively.

Table 3. Comparison results of 32 subjects (%).

Whole-Heart Our Method Larrey-Ruiz et al. [14]

1st to 30th slice—OA 100.00 94.42
1st to 30th slice—A (max) 100.00 99.81

31st to 56th slice—OA 34.28 -
1st to 56th slice—OA 73.66 87.64

1st to 56th slice—A (min) 67.85 46.95

Among the unsupervised deep learning approaches proposed by [27–29], there is one
paper by Joyce et al. [28] in which multi-class medical image segmentation was conducted
on MYO, LV and RV regions on 20 CT volumes with a dice value (mDice) of 0.51. For
the top 20 subjects, our result of a full volume for whole-heart segmentation outperforms
Joyce et al. [28] with an mIoU of 0.7833, as shown in Table 4.

Table 4. Comparison results of 20 subjects.

Whole-Heart Our Method Joyce et al. [28]

1st to 56th slice 0.7833 (mIoU) 0.51 (mDice)

6. Conclusions

This paper presented semantic whole-heart segmentation combining K-Means clus-
tering as a threshold criterion of the mean-thresholding method and the mathematical
morphology method as a threshold shifting enhancer. The experiment was conducted
on 500 subjects in two cases: (1) 56 slices per volume containing full heart scans, and (2)
30 slices per volume containing about half of the top of heart scans before the liver appears.
In both cases, the results showed an average silhouette score of the K-Means method, with
a value of 0.4130. Additionally, the experiment on 56 slices per volume achieved an OA
and mIoU of 34.90% and 41.26%, respectively; while the performance result on the first
30 slices per volume achieved an OA and mIoU of 55.10% and 71.46%, respectively.
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High performance was achieved when the heart was well surrounded by lungs.
Otherwise, low performance was achieved. The low performance was likely caused by the
lack of filtering of the liver, as both the HU pixels and geometrics of the organ could not be
used as a criterion for thresholding. Additionally, the goal of the proposed research was to
segment the whole heart. However, the results showed that the four-chamber segmentation
outperformed the whole-heart segmentation. The outperformance was due to a failure in
generating the convex hull of spine mask.

There are limitations in this study, such as the failure of DA segmentation and liver
removal, but the main contributions of our proposed method can be summed up as
the following: (1) we proposed fully unsupervised semantic whole-heart segmentation
from chest CT images; (2) we proposed the K-Means method as a thresholding criterion
and the mathematical morphology method as a threshold-shifting enhancer; and (3) we
demonstrated good performance for the first 30 slices, which will be able to be used as
an initial step for other cardiac applications in other CADs. Finally, the future direction
of our research is to conduct an unsupervised deep learning approach to overcome the
abovementioned limitations.
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OA Overall accuracy
PRI Probabilistic rand index
RA Right atrium
ROI Regions of interest
RV Right ventricle
SD Standard deviation
TP True positive
WHO World health organization

Appendix A. Chest CT Image

A computed tomography (CT) image [3,30] is a medical image that is the result of
using X-ray CT scan measurements taken from different angles of a body. CT images allow
the radiologist to identify disease or injury within various regions of the body without
cutting. CT scans of the chest are mainly performed to gain knowledge about lung and
heart anatomy, as shown in Figure A1. Figure A1a illustrates a contrast CT image in which
the right lung is at the left position of the image, while the left lung is at the right position
of the image. For the current study, we address a contrast CT image as a CT image. For
example, the coronary CT calcium scan is used to assess CADs. A large amount of calcium
pixels appearing in the coronary arteries can narrow the arteries and increase the risk of
heart attack, as illustrated by the red arrow in Figure A1b.

Figure A1. Chest contrast CT image: (a) normal coronary arteries; (b) abnormal coronary arteries consisting of calcium voxels.

Typically, the scanning starts from the thorax and travels to the base of lungs, known
as an axial examination [38]. The number of slices per person depends on CT scanner
specifications. In the current study, the CT images were scanned using a Phillips iCT 256
(described in detail in Section 4.1). Since the number of slices in which the heart appeared
in the chest CT images varies from person to person, 50 subjects were randomly selected
and investigated, as illustrated in Figure A2. The investigation was tracked from the first
slice until the slice that contains the base of heart. Among the 50 subjects, there were
12 subjects whose heart images ended at the 45th slice.
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Figure A2. Number of subjects whose heart image ended from the 40th to 56th slice.

Appendix B. Hounsfield Unit (HU)

The Hounsfield unit (HU) [39] is a quantitative scale obtained by the linear transfor-
mation of the measurement of attenuation coefficients. Its value describes the radiodensity
of a CT image and highlights different substances in the human body. The value is scaled
from –1000 HU for air to +2000 HU for very dense bone and over +3000 HU for metals. The
HU of substances remain the same from person to person. The HU-presenting substances
of the human body in chest CT images are listed in Table A1.

Table A1. Hounsfield unit substances in chest CT images.

Substance Hounsfield Unit

Air −1000
Lung −500
Fat −100~−50

Water 0
Muscle +10~+40
Liver +40~+60
Bone +700~+1000

Figure A3 shows a frequency of HU for one CT image. The frequency histogram
describes the following information: there are more than 20,000 pixels with HU < −1000,
known as air; there are more than 15,000 pixels with −1000 < HU < −500, known as lungs;
there are more than 20,000 pixels with −500 < HU < +500, known as muscles, fat, heart
and more; there are a few pixels with HU > +500, known as bone.

Figure A3. Hounsfield units in a chest CT image: (a) chest CT image; and (b) frequency histogram.
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Appendix C. Algorithms

The following algorithms were used in this manuscript.

Table A2. Generation process of a convex hull of foreground mask.

Algorithm 1: Generate a convex hull of foreground mask

Input: Whole chest CT image in grayscale format (512 × 512)
Output: Convex hull of foreground mask in binary format (512 × 512)

1: Begin
2: centroid_clusters = KMean(input_image, n_cluster = 2)
3: fg_threshold = mean(centroid_clusters)
4: if input_image > fg_threshold:
5: fg_mask = 1
6: else
7: fg_mask = 0
8: fg_mask = morphology.opening(fg_mask, n_iteration = 2)
9: ch_fg_mask = morphology.convex_hull(fg_mask)
10: End

Table A3. Generation process of a lung mask, a convex hull of lung mask and an intermediate heart mask.

Algorithm 2: Generate a lung mask, a convex hull of lung mask and an intermediate heart mask

Input: Whole chest CT image in grayscale format (512 × 512);
Convex hull of foreground mask in binary format (512 × 512)
Output: Intermediate heart mask in binary format (512 × 512)

1: Begin
2: foreach pixel in input_image:
3: if ch_fg_mask == 0:
4: fg_pixel = 255
5: else
6: fg_pixel = pixel
7: if fg_pixel < fg_threshold:
8: lung_mask = 1
9: else
10: lung_mask = 0
11: lung_mask = morphology.closing(lung_mask, n_iteration = 2)
12: ch_lung_mask = morphology.convex_hull(lung_mask)
13: int_heart_mask = ch_lung_mask AND invert(lung_mask)
14: End

Table A4. Generation process of a spine mask, a convex hull of spine mask and a heart mask.

Algorithm 3: Generate a spine mask, a convex hull of spine mask and a heart mask

Input: Whole chest CT image in grayscale format (512 × 512);
Intermediate heart mask in binary format (512 × 512)
Output: Heart mask in binary format (512 × 512)

1: Begin
2: foreach pixel in input_image:
3: if int_heart_mask == 0:
4: int_heart_pixel = 0
5: else
6: int_heart_pixel = pixel
7: centroid_clusters = KMean(int_heart_pixel, n_cluster = 3)
8: spine_threshold = max(centroid_clusters)
9: if int_heart_pixel > spine_threshold:
10: spine_mask = 1
11: else
12: spine_mask = 0
13: spine_mask = morphology.closing(spine_mask, n_iteration = 2)
14: spine_mask = morphology.opening(spine_mask, n_iteration = 2)
15: (x0,y0) = measure.regionprob(spine_mask)
16: (xc,yc) = measure.regionprob(spine_mask)
17: ch_spine_mask = spine_mask[y0 : , : xc] is set to 1
18: ch_spine_mask = ch_spine_mask[yc : , : ] is set to 1
19: heart_mask = int_heart_mask AND invert(ch_spine_mask)
20: End



Sensors 2021, 21, 2675 18 of 19

Table A5. Generation process of segmented heart pixels.

Algorithm 4: Segment a heart image

Input: Whole chest CT image in HU format (512 × 512);
Heart mask in binary format (512 × 512)
Output: Segmented heart pixel in HU format (512 × 512)

1: Begin
2: foreach pixel in input_image:
3: if heart_mask == 0:
4: heart_pixel = −1000
5: else
6: heart_pixel = pixel
7: End

Table A6. Generation process of a refined convex hull of lung mask.

Algorithm 5: Refine a convex hull of lung mask

Input: Lung mask in binary format (512 × 512 × 56)
Output: Refined convex hull of lung mask in binary format (512 × 512 × 56)

1: Begin
2: for n in range(56):
3: if y0 of lung_mask [n] > y0 of lung_mask [n-i]:
4: ch_lung_mask [n] = ch_lung_mask [n] OR ch_lung_mask [n-i]
5: End
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