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In recent years, next-generation sequencing (NGS)–based genetic testing has become crucial in cancer care. While its primary objec-
tive is to identify actionable genetic alterations to guide treatment decisions, its scope has broadened to encompass aiding in patho-
logical diagnosis and exploring resistance mechanisms. With the ongoing expansion in NGS application and reliance, a compelling 
necessity arises for expert consensus on its application in solid cancers. To address this demand, the forthcoming recommendations 
not only provide pragmatic guidance for the clinical use of NGS but also systematically classify actionable genes based on specific 
cancer types. Additionally, these recommendations will incorporate expert perspectives on crucial biomarkers, ensuring informed 
decisions regarding circulating tumor DNA panel testing.
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Introduction

Over the past few years, next-generation sequencing 
(NGS)–based genetic testing has emerged as a crucial aspect 
of cancer patient care, with the number of tests performed 
rapidly increasing since its reimbursement by the national 
health insurance in Korea in 2017. However, as the use of 
NGS-based genetic testing continues to expand, there is an 
increasing need for maximizing benefits for patients while 
also considering cost-effectiveness.

The primary objective of NGS-based genetic testing is to 
identify targetable actionable genes that can guide treatment 
selection. However, its application has expanded to include 
diagnosis and exploration of resistance mechanisms, enab-
ling more personalized treatment options. Moreover, bio-
markers like homologous recombination deficiency (HRD), 
microsatellite instability–high (MSI-H)/mismatch repair 
deficiency (MMR-D), and high tumor mutational burden 
(TMB-H) have gained increasing significance. Consequently, 
NGS-based testing is now widely used to analyze these bio-
markers and make well-informed treatment decisions.

With the expanding application of NGS-based genetic test-

ing, there is a need for expert consensus on best practices and 
guidelines for its use. This recommendation aims to (1) pro-
vide guidance on the practical application of NGS in daily 
clinical practice and (2) classify actionable gene lists by can-
cer type, based on a comprehensive review of the literature 
and the consensus of experts. Furthermore, the recommen-
dation will present expert opinions, based on existing evi-
dence, regarding biomarkers including HRD, MSI-H/MMR-
D, TMB, and circulating tumor DNA (ctDNA) panel testing.

Materials and Methods

The Korean Society of Medical Oncology (KSMO) and 
the Korean Society of Pathologists (KSP) have collaborated 
to develop subsequent clinical practice recommendations. 
These focus on key questions not addressed in the previous 
guidelines for NGS-based genetic testing and the molecu-
lar tumor board from the KSMO and Korean Cancer Study 
Group (KCSG) Precision Medicine Networking Group [1]. In 
March and April of 2022, the Steering Committee and Writ-
ing Committee were reestablished. They were comprised 
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of medical oncologists, pathologists, and bioinformaticians 
convened by KSMO, KCSG, and KSP. Two main issues were 
addressed: the proper recommendations for NGS-based 
genetic testing in solid cancers, and the classification level 
determination of genes applicable in Korea. The committees 
initially conducted a survey to assess the appropriateness of 
key questions, achieving consensus through feedback from 
all committee members, to confirm the final selection of key 
questions. Subsequently, recommendations for these ques-
tions were drafted by the Steering Committee and further 
refined through extensive discussions with all committee 
members during a comprehensive workshop in September 
2022. These modified recommendations were then final-
ized through a final survey in November 2022. Additionally, 
the Writing Committee classified actionable genes by can-
cer type using the Korean Precision Medicine Networking 
Group (KPMNG) scale for clinical actionability of molecular 
targets (Table 1). The references for determining the action-
ability of target genes include case series and clinical trials 
from all phases (phase I, II, III) published up to August 31, 
2023. Studies that were part of basket trials were also con-
sidered for inclusion. Furthermore, significant abstracts from 
clinical trials presented at the American Society of Clinical 
Oncology Annual Meeting and the European Society for 
Medical Oncology (ESMO) Congress were incorporated. 
Subsequently, these gene lists, along with their correspond-
ing references, were shared with disease-specific divisions 
within KCSG and KSP, where feedback and input from these 
committees were incorporated to further refine the rankings. 
The lists underwent one final review and confirmation by the 
entire committee. The finalized recommendations were pre-
sented at the 2023 KSMO annual meeting and announced at 
the 2023 KSP annual meeting. These recommendations have 

received endorsements from both KSMO and KSP.

Key Questions and Recommendations 

1. Question 1. What are the appropriate recommendations 
for NGS-based genetic testing in solid cancers?

Recommendation 1. NGS-based genetic testing is recom-
mended for patients with advanced or metastatic solid can-
cers who are eligible for systemic treatments. 

There is mounting evidence that NGS-based matched treat-
ments enhance outcomes in patients with advanced or meta-
static cancers [2-6]. Even in tumor types like breast cancer, 
where the role of NGS has traditionally been less defined, a 
recent study has shown improved treatment outcomes when 
patients were matched to appropriate therapies through 
comprehensive genomic analysis, including NGS [7].

Genomic testing should be conducted in patients with 
advanced or metastatic solid cancers if there are approved 
treatments matching genomic biomarkers by a regulatory 
authority. For instance, several genetic tests, including those 
for EGFR, ALK, ROS1, BRAF, MET, KRAS, ERBB2, and RET, 
should be conducted in patients with non-squamous non–
small cell lung cancer (NSCLC). In cases where multiple gene 
tests are required, NGS can efficiently utilize tumor tissue 
compared to testing individual genes. The National Compre-
hensive Cancer Network guideline for NSCLC also recom-
mends panel-based genomic testing by NGS [8]. The use of 
a multi-gene panel by NGS is also recommended for tumors 
like ovarian cancer, prostate cancer, and pancreatic cancer. 
Testing for homologous recombination repair (HRR) related 
genes is required for these types of cancers to inform the use 
of poly(ADP-ribose) polymerase (PARP) inhibitors. Even for 
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Table 1.  KPMNG scale of clinical actionability of molecular target (K-CAT) [1] 

Level	 Clinical implication	 Required level of evidence

1	 Treatment should be considered 	 MFDS, FDA, EMA or equivalent-approved drug OR 
	   standard of care	   Prospective, randomized, phase III trials showing the benefit of survival endpoints
2	 Treatment would be considered 	 Prospective phase I/II trials show clinical benefita)

3	 Clinical trials to be discussed 	 A: Retrospective study or case series show potential clinical benefit in   
	   with patients	   a specific tumor type  
		  B: Clinical studies show potential clinical benefit in other indications
4	 Preclinical data only, lack of clinical data 	 Preclinical evidence suggests the potential benefit
G	 Suspicious germline variant on 	 Suggestive actionable germline variant on tumor tissue testing
	     tumor tissue NGS
R	 Predictive biomarker of resistance 	 FDA-recognized predictive biomarker of resistance
EMA, European Medicines Agency; FDA, U.S. Food and Drug Administration; K-CAT, KPMNG scale of Clinical Actionability of molecu-
lar Targets; KPMNG, Korean Precision Medicine Networking Group; MFDS, Ministry of Food and Drug Safety; NGS, next-generation 
sequencing. a)Prospective phase I/II trials supporting level 2 targets include clinical trials across tumor types such as basket trials. In this 
case, the clinical benefit needs to be judged by expert consensus. 
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patients with cancers in which actionable genetic alterations 
are rarely found, NGS is recommended, taking into account 
tumor-agnostic biomarkers. MSI-H/MMR-D, TMB-H, BRAF 
V600E, RET fusion, and NTRK fusions have been approved 
by the U.S. Food and Drug Administration (FDA) as tumor-
agnostic biomarkers [9-20]. In Korea, matched treatments for 
tumors with MSI-H/MMR-D and NTRK fusions have been 
approved. 

If a biomarker-matched treatment showing clinical ben-
efit has not yet received regulatory approval, we strongly  
encourage patients to participate in clinical trials based on 
molecular profiles from NGS. Our goal is to provide maxi-
mum treatment options for individual patients with advan-
ced or metastatic cancer. The probability of detecting action-
able genetic alterations using NGS varies based on the cancer 
type [2]. Given that the potential benefits of NGS may vary 
among individuals, it is essential to discuss its aims and 
limitations with the patient. Furthermore, NGS is not recom-
mended when systemic treatment is unfeasible due to factors 
including the patient’s performance status, comorbidities, 
and socioeconomic conditions.

Recommendation 2. NGS-based genetic testing can be rec-
ommended for the pathological diagnosis of solid cancers.

Precise pathological diagnosis is a fundamental compo-
nent of precision oncology and in predicting prognosis for 
patients with solid cancer. Notably, in the recently pub-
lished classification of tumors by the World Health Organi-
zation (WHO), the diagnosis of tumors defined by genetic 
alterations is gradually expanding. Consequently, there 
are increasing cases in which a final pathological diagnosis 
is made based on NGS results. In addition, OncoKB [21], 
which is widely referred to in the interpretation of genetic 
alterations, provides information about diagnosis of hema-
tologic malignancy by classifying the genetic alterations into  
‘Diagnostic’ Level Dx1 (required for diagnosis), Dx2 (sup-
ports diagnosis), and Dx3 (investigational diagnosis). It is 
anticipated that this trend will soon be reflected in the diag-
nosis of solid cancers. We will briefly discuss the application 
of NGS in the diagnosis of bone and soft tissue sarcoma,  
renal cell carcinoma, and central nervous system tumors,  
using these as representatives.

1) Bone and soft tissue sarcomas 
As more than half of soft tissue tumors and approximately 

a quarter of bone tumors harbor recurrent genetic alterations 
[22], molecular analysis is a strong diagnostic tool for the 
evaluation of bone and soft tissue sarcomas. There are sev-
eral advantages of using NGS: simultaneous examination of 
multiple genomic regions, low-level tumor sample require-
ment and intuitive visualization of results [23]. NGS panels 

designed for sarcoma diagnosis utilize primers for the detec-
tion of fusions, amplifications, deletions and point mutations, 
which broadly cover genetic alterations in various sarcoma 
types. In daily practice, pathologists often encounter cases 
in which NGS provides the precise diagnosis by confirming 
or excluding differential diagnoses. Some cases can be even 
diagnosed toward unsuspected entities on the microscopic 
examination after NGS analysis [24]. 

NGS analysis may be applied for differential diagnosis of 
bone and soft tissue sarcomas as follows: (1) low-grade cen-
tral osteosarcoma (MDM2) vs. fibrous dysplasia (GNAS); (2) 
chondroblastic osteosarcoma (chromosomal instability) vs. 
chondrosarcoma (IDH1/2); (3) malignant peripheral nerve 
sheath tumor (CDKN2A) vs. atypical neurofibroma; (4) lipo-
sarcoma (MDM2) vs. atypical pleomorphic lipomatous tumor 
(RB1); (5) alveolar rhabdomyosarcoma (PAX3/7::FOXO1) vs. 
embryonal rhabdomyosarcoma (mutations in RAS-MAPK 
pathway); (6) tumors of uncertain differentiation (Ewing 
sarcoma, round cell sarcoma with EWSR1-non-ETS fusions,  
CIC-rearranged sarcoma, sarcoma with BCOR genetic alte-
rations, synovial sarcoma, alveolar soft part sarcoma, extra-
skeletal myxoid chondrosarcoma, clear cell sarcoma of soft 
tissue, etc.).

2) Renal cell carcinoma 
NGS-based genetic panel test can be recommended for 

the pathological diagnosis of molecularly defined renal cell 
carcinoma (RCC), which includes fumarate hydratase (FH)– 
deficient RCC, succinate dehydrogenase (SDH)–deficient 
RCC, TFE3-rearranged RCC, TFEB-rearranged or TFEB-
amplified RCC, ELOC (formerly TCEB1)-mutated RCC, 
SMARCB1 (INI1)-deficient RCC, and ALK-rearranged RCC 
according to the recent 2022 WHO classification [25]. The 
molecular alterations of these renal tumors are as follows: 
biallelic FH mutation/inactivation in FH-deficient RCC; ina-
ctivating mutations of one of SDH genes, most commonly 
SDHB, followed by SDHA and SDHC, and rarely SDHD in 
SDH-deficient RCC; translocations involving TFE3 in TFE3-
rearranged RCC; translocations involving TFEB in TFEB-
rearranged RCC; TFEB amplification in TFEB-amplified 
RCC; inactivating mutations exclusively at TCEB1 Y79 in 
ELOC (formerly TCEB1)-mutated RCC; translocations or 
deletions involving 22q11.23 in SMARCB1 (INI1)-deficient 
RCC; translocations involving ALK in ALK-rearranged RCC. 
In addition, NGS-based genetic panel test may also be rec-
ommended for morphologically defined renal tumors with 
characteristic molecular alteration. Clear cell RCC is charac-
terized by the loss of chromosome 3p accompanied by the 
inactivation mutation or methylation of the remaining VHL 
gene. Papillary RCC commonly shows gains of chromo-
somes 7 and 17, and loss of the Y chromosome with MET 
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alterations in the low-grade tumor. Chromophobe RCC has 
losses of multiple chromosomes including 1, 2, 6, 10, 13, 17, 
21, and Y. Eosinophilic solid and cystic RCC can show TSC 
gene mutations or biallelic losses.

3) Central nervous system tumor 
With the development of research techniques such as NGS, 

our understanding of the molecular and clinicopathological 
characteristics of brain tumors has advanced greatly. Based 
on these changes, following the 2016 Central Nervous Sys-
tem (CNS) WHO classification revised 4th edition [26] and 
cIMPACT-NOW [27], the 2021 CNS WHO classification 5th 
edition [28] fully included the molecular genetic characteris-
tics of tumors in the WHO classification of brain tumors. In 
the 2021 CNS WHO classification, several molecular genetic 
characteristics such as gliomas, glioneuronal tumors, epend-
ymomas, embryonic tumors (medulloblastoma, etc.), and 
meningiomas were introduced into the diagnostic criteria. 
Molecular genetic characteristics included in the diagnostic 
criteria range from those that can be identified with a single 
test (sequencing, fluorescence in situ hybridization, etc.) to 
those that require integrated identification of various genes 
involved in a specific pathway, as well as those that identify 
chromosomal arm-level copy number alterations. To cover 
all of these, NGS testing is essential. In addition, these molec-
ular classifications determine the diagnosis of the tumor and 
further determine the WHO grade, which is a basic brain  
tumor grading system that determines the treatment strat-
egy. The use of traditional histopathological morphological 
classification alone without NGS testing can mislead pati-
ents’ treatment strategies.

Recommendation 3. NGS-based genetic testing can be  
repeated in patients with solid cancer in case of disease recu-
rrence or development of drug resistance. 

Acquired resistance inevitably occurs with the growing 
use of targeted agents targeting various driver oncogenes. 
Representatively, we have seen the successful development 
of osimertinib, the third-generation epidermal growth factor 
receptor (EGFR) tyrosine kinase inhibitor (TKI) during the 
last decade [29]. At the time of drug development, osimertin-
ib was developed for the patients who revealed the acquired 
EGFR threonine to methionine at codon 790 (T790M) muta-
tion at the time of treatment failure with first- or second-
generation EGFR TKI [30]. Therefore, the detection of EGFR 
T790M has been crucial for making treatment decisions in 
patients who experienced treatment failure with first- or 
second-generation EGFR TKIs [8]. Apart from EGFR T790M, 
other types of acquired resistance mechanisms were revealed 
by NGS, such as ERBB2 amplification or MET amplification 
[31]. Given the recent memorial imprint of resistance mecha-

nism discovery, we have started using repeated NGS to detect  
acquired resistance in on-treatment tumor tissue, as well as 
in liquid biopsy samples.

Generally, acquired resistance can be classified into two 
categories: (1) target-dependent, such as target gene muta-
tions, and (2) target-independent, such as gene aberrations 
in bypass pathways [32]. Beyond the EGFR T790M muta-
tion, the EGFR C797S mutation is one of the most common 
EGFR-dependent resistance mechanisms against osimertinib 
[33]. MET amplification is another type of bypass pathway 
resistance mechanism across oncogene-driven subsets of 
NSCLC [34]. The EML4::ALK fusion, occurring in 3%-7% of 
all NSCLC cases, is currently treated with alectinib or brig-
atinib, the second-generation ALK TKIs, which are the stand-
ard treatments for treatment-naïve ALK-positive NSCLC  
patients [35-37]. ALK G1202R, solvent front mutation affec-
ting drug binding to active site, is the most common tar-
get-dependent mutation [38]. Detecting the ALK G1202R 
mutation through NGS enables the prediction of a notable 
response with subsequent lorlatinib. NTRK fusion is a tumor 
agonistic driver oncogene, detected in less than 1% of solid 
cancers. With introduction of larotrectinib and entrectinib in 
clinic, several target-dependent point mutations were noted, 
which can be found by NGS [19,20]. Repotrectinib (TPX-
0005) has demonstrated anti-tumor efficacy in patients pre-
viously treated with NTRK-targeting TKIs and who harbor 
target-dependent TRK mutations [39]. 

Since the 2000s, the clinical use of NGS has expanded  
beyond the detection of driver oncogenes. It has paved 
the way for the discovery of novel targets associated with  
acquired resistance and provided valuable insights into 
potential targets for the next generation of targeted thera-
peutics. However, it’s important to acknowledge certain lim-
itations associated with the repetition of NGS testing. Chal-
lenges include the increased cost, difficulties in obtaining 
repeated tumor biopsies, and associated risks. Additionally, 
the likelihood of identifying actionable targets at the point 
of resistance can vary depending on the specific cancer type 
and drugs, with potential restrictions in drug availability. 
Nonetheless, it remains evident that NGS can play a crucial 
role in helping inform subsequent treatment decisions for 
certain patients who have experienced treatment failure with 
targeted therapy. 

2. Question 2. How can we determine the classification lev-
el of genes applicable in Korea?

Advancements in NGS technologies have facilitated the 
identification of driver mutations in cancer, prompting a 
shift from a histology-based to a molecular-based approach 
in cancer treatment. Simultaneously, the advent of targeted 
therapies has allowed for treatments based on genetic altera-
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tions irrespective of the tumor’s origin. This concept, known 
as tissue-agnostic indication, has demonstrated promising 
results in recent studies and has become a crucial element 
in the standard care for cancer. Currently, the tissue-agnostic 
indications approved by the FDA are listed in Table 2 [9-20, 
40].

Taking into account both the evidence level of clinical  
research and clinical benefit, the committee members classi-
fied actionable genes for each type of cancer based on their 
level using KPMNG scale of Clinical Actionability of molec-
ular Targets (K-CAT). We also included certain genes, such 
as POLE in endometrial cancer, that are clinically significant 
and thus necessitate testing. The actionable gene lists for 
NSCLC, breast cancer, esophageal cancer, stomach cancer, 
colorectal cancer, head and neck cancer, pancreatic cancer, 
biliary tract cancer, endometrial cancer, urothelial cancer, and 
kidney cancer are provided in Tables 3-17 [11-15,29,36,37,41-

190]. Each table included genes corresponding to levels 1 
through 3A.

3. Additional topics
1) Homologous recombination deficiency 
Genomic instability is one of the most frequent underly-

ing features of carcinogenesis, and defective DNA repair 
has been described as a cancer hallmark [191]. HRR is a  
series of interrelated pathways that function in the repair of 
DNA double-strand breaks and interstrand crosslinks [192].  
Important genes involved in the HRR process include BRCA1, 
BRCA2, RAD51, RAD51C, RAD51D, ATM, ATR, PALB2, 
MRE11, NBS1, BARD1, CHEK1, and CHEK2 [193,194]. How-
ever, it is essential to note that the list of genes known to be 
related to the HRR process is continually evolving through 
ongoing research. A defect in the HRR pathway has been 
linked to several cancers, including breast, ovarian, prostate 
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Table 2.  List of genetic alterations with tumor agnostic indications by FDA

Gene/Alteration	 Matched treatment	 K-CAT	 Reference

NTRK fusion	 Entrectinib	 1	 [19,20]
		  Larotrectinib	
BRAF V600E	 Dabrafenib+trametinib	 1	 [11-17]
		    (except colorectal cancer)
RET fusion	 Selpercatinib	 1	 [18]
Microsatellite instability–high/Mismatch repair deficiency 	 Pembrolizumab	 1	 [9,40]
High tumor mutation burden 	 Pembrolizumab	 1	 [10]
FDA, U.S. Food and Drug Administration; K-CAT, Korean Precision Medicine Networking Group scale of Clinical Actionability of mole-
cular Targets. 

Table 3.  List of genomic alterations level 1/2/3A according to K-CAT in advanced NSCLC

Gene	 Alteration	 Prevalence (%)	 K-CAT	 Reference

EGFR	 Exon 19 in-frame deletions, L858R,	 30-46	 1	 [41-45]
	    G719X, L861Q, S761I
	 T790M	 50 of treated EGFR	 1, R	 [29,46,47]
		    mutant NSCLC
	 Exon 20 in-frame insertion	 3	 1	 [48,49]
BRAF	 V600E	 2-4	 1	 [12,13,50]
ALK	 Rearrangement/Fusions	 3-5	 1	 [36,37,51,52]
KRAS	 G12C	 13	 1	 [53,54]
MET	 Exon 14 in-frame deletions, 	 3-4	 1	 [55,56]
	   Exon 14 splice mutations	
	 Amplification	 3-5	 2	 [56]
RET	 Rearrangement/Fusions	 1.7	 1	 [57,58]
ROS1	 Rearrangement/Fusions	 2.6	 1	 [59,60]
ERBB2	 Exon 20 in-frame insertion	 2.3	 1	 [61-64]
	 Amplification	 2.4-38	 2	 [65,66]

K-CAT, Korean Precision Medicine Networking Group scale of Clinical Actionability of molecular Targets; NSCLC, non–small cell lung 
cancer. 
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and pancreatic cancer [117,142,153,195], and HRD can make 
tumors more sensitive to platinum-based chemotherapy and 
PARP inhibitors [196,197]. Thus, it is critical to develop meth-
ods for determining the HRD status in order to maximize 
clinical benefit from these drugs. 

There are three main categories of available tests for HRD 
analyzing (1) the etiology of HRD (mutation/methylation 
sequencing), (2) the current homologous recombination sta-
tus (functional assays), and (3) prior HRD exposure (genom-

ic scars). Each type of cancer (ovarian, breast, pancreatic 
and prostate) requires different tests. The germline BRCA 
1/2 mutation test is useful for predicting response to PARP 
inhibitors in ovarian and breast cancer [76,143-146,198]. In 
ovarian cancer, tumor (incorporating germline and somatic) 
as well as somatic BRCA 1/2 mutation testing exhibit good 
clinical validity by reliably identifying the subset of patients 
who benefit from PARP inhibitor therapy [146-148]. Evi-
dence regarding the benefit of mutation tests for each non-
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Table 4.  List of genomic alterations level 1/2/3A according to K-CAT in advanced breast cancer

Gene	 Alteration	 Prevalence (%)	 K-CAT	 Reference

ERBB2	 Amplifications	 15-20	 1	 [67-71]
	 Oncogenic mutations	 4	 2	 [72,73]
PIK3CAa)	 Oncogenic mutations	 30-40	 1	 [74,75]
BRCA1/2	 Germline oncogenic mutations	 4	 1	 [76,77]
BRCA1/2b)	 Somatic oncogenic mutationsc)	 3	 2	 [78-80]
PTEN	 Oncogenic mutations	 7	 2	 [81,82]
ESR1	 Oncogenic mutations 	 10	 R	 [83]
 	   (mechanism of resistance)
AKT1	 E17K	 5	 2	 [82,84]
PALB2d)	 Germline oncogenic mutations	 0.5-1	 2	 [79,85]

HRD, homologous recombination deficiency; K-CAT, Korean Precision Medicine Networking Group scale of Clinical Actionability of 
molecular Targets; PARP, poly(adenosine diphosphate [ADP]–ribose) polymerase. a)This applies only to breast cancer that is hormone 
receptor-positive/HER2-negative and has mutations including E542K, E545A, H1047R, H1047Y, Q546E, H1047L, Q546R, E545G, E545D, 
E545K, C420R. Other oncogenic mutations not included in this category, caution is needed, since it is unknown whether other mutations 
are associated with response to phosphoinositide 3-kinase inhibitor therapy, b)Phase III trials of PARP inhibitors have been conducted in 
patients with germline BRCA mutations, and their therapeutic effects have been confirmed. In some studies, the effects of PARP inhibi-
tors have also been reported in patients with somatic BRCA mutations, and somatic tumor sequencing can identify many germline BRCA 
mutations, c)In addition to BRCA 1/2, there are several other genes associated with homologous recombination deficiency, including ATRX, 
BLM, BRIP1, CHEK2, FANCA/C/D2/E/F/G/L, MRE11A, NBN, PALB2, and RAD50. Although the discovery frequency of each gene is very 
low, they are collectively found in approximately 8% of all breast cancers, d)There are multiple germline mutations associated with HRD in 
breast cancer patients, but this table only includes the two most frequent ones.

Table 5.  List of genomic alterations level 1/2/3A according to K-CAT in advanced esophageal cancer

Gene	 Alteration	 Prevalence (%)	 K-CAT	 Reference

ERBB2	 Amplification	 3.9-10	 2	 [86]

K-CAT, Korean Precision Medicine Networking Group scale of Clinical Actionability of molecular Targets. 

Table 6.  List of genomic alterations level 1/2/3A according to K-CAT in advanced stomach cancer

Gene	 Alteration	 Prevalence (%)	 K-CAT	 Reference

ERBB2	 Amplification	 15	 1	 [87-89]
FGFR2a)	 Amplification	 5	 2	 [90]
MET	 Amplification	 2-5	 2	 [91]
EGFR	 Amplification	 5-10	 3A	 [92]
ctDNA, circulating tumor DNA; K-CAT, Korean Precision Medicine Networking Group scale of Clinical Actionability of molecular Targets. 
a)FGFR2b overexpression or FGFR2 amplification by ctDNA analysis.



Cancer Res Treat. 2023 Nov 29 [Epub ahead of print]     7

Miso Kim, Recommendations for the Use of NGS in Solid Cancer

Table 8.  List of genomic alterations level 1/2/3A according to K-CAT in advanced head and neck cancer

Gene	 Alteration	 Prevalence (%)a)	 K-CAT	 Reference

NOTCH1, 2, 3	 Oncogenic mutations	 10-12	 2	 [107,108]
ERRB2	 Amplification	 30-40	 2	 [109-111]
FGFR1, 3	 Amplification/Oncogenic mutations	 1-7	 2	 [112-114]
MET	 Amplification	 1	 3A	 [115,116]
K-CAT, Korean Precision Medicine Networking Group scale of Clinical Actionability of molecular Targets. a)The above prevalence is about 
the representative subtype among various subtypes of head and neck cancer.

Table 9.  List of genomic alterations level 1/2/3A according to K-CAT in advanced pancreatic cancer

Gene	 Alteration	 Prevalence (%)	 K-CAT	 Reference

BRCA 1/2	 Germline oncogenic mutations	 1-4	 1	 [117,118]
PALB2	 Oncogenic mutations	 0.6	 2	 [118]
KRAS	 G12C	 2-3	 2	 [119,120]
PIK3CA	 Oncogenic mutations	 3	 3A	 [121]
ERBB2	 Amplifications/Oncogenic mutations	 1-2	 3A	 [72,122]
ALK	 Rearrangement/Fusions	 < 1	 3A	 [123]
NRG1	 Rearrangement/Fusions	 1	 3A	 [124]
ROS1	 Rearrangement/Fusions	 < 1	 3A	 [125]
K-CAT, Korean Precision Medicine Networking Group scale of Clinical Actionability of molecular Targets.

Table 10.  List of genomic alterations level 1/2/3A according to K-CAT in advanced biliary tract cancer

Gene	 Alteration	 Prevalence (%)	 K-CAT	 Reference

IDH1	 Oncogenic mutations	 10-23	 1	 [126,127]
FGFR2	 Rearrangement/Fusions	 8-14	 1	 [128-130]
BRAF	 V600E	 5	 1	 [14,15]
ERBB2	 Amplification	 10	 2	 [131-133]
K-CAT, Korean Precision Medicine Networking Group scale of Clinical Actionability of molecular Targets. 

Table 7.  List of genomic alterations level 1/2/3A according to K-CAT in advanced colorectal cancer

K-CAT, Korean Precision Medicine Networking Group scale of Clinical Actionability of molecular Targets; MSI-H, microsatellite instabil-
ity–high; MMR-D, mismatch repair deficiency.

Gene	 Alteration	 Prevalence (%)	 K-CAT	 Reference

KRAS 	 Oncogenic mutations	 40	 R	 [93,94]
NRAS	 Oncogenic mutations	 3-5	 R	 [95,96] 
BRAF	 V600E	 5-10	 1	 [96-98]
Mismatch 	 MSI-H/MMR-D	 4-5	 1	 [99,100]
  repair 
  deficiency	
ERBB2	 Amplification	 4-5	 1	 [101]
KRAS	 G12C	 3	 2	 [102,103]
POLE	 Exonuclease domain mutations	 1-3	 2	 [104-106]
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BRCA HRR gene for predicting responses to PARP inhibi-
tors remains insufficient in ovarian cancer. HRD tests using 
genomic instability scores (GIS) or loss of heterozygosity 
(LOH) scores are useful for predicting the responses to PARP 
inhibitors in ovarian cancer patients without BRCA 1/2 
mutation [142,144,146]. The GIS from myChoice CDx (Myr-
iad Genetics) represents the sum of LOH, large-scale tran-
sitions, and telomeric allelic imbalance and a GIS of 42 has 

been established as the threshold to determine HRD positiv-
ity [199,200]. To date, GIS is the only genomic scar assay that 
has been evaluated in first-line randomized controlled trials 
for ovarian cancer [142,143]. The LOH test (FoundationOne 
CDx, Foundation Medicine) uses NGS to determine the per-
centage of genomic LOH and LOH-high is defined with a cut-
off of 16% or higher, referencing The Cancer Genome Atlas 
data [201]. In metastatic pancreatic cancer, a germline BRCA 
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Table 11.  List of genomic alterations level 1/2/3A according to K-CAT in advanced endometrial cancer

Gene	 Alteration	 Prevalence (%)	 K-CAT	 Reference

ERBB2	 Amplification	 30 of uterine 	 2	 [134]
		    serous carcinoma	
AKT1	 E17K	 2	 2	 [84]
POLEa)	 Oncogenic mutations	 5-15	 NA	 [135,136]
TP53a),b)	 Oncogenic mutations	 5-15	 NA	 [135]
IHC, immunohistochemistry; K-CAT, Korean Precision Medicine Networking Group scale of Clinical Actionability of molecular Targets; 
MMR, mismatch repair; NGS, next-generation sequencing; TCGA, The Cancer Genome Atlas. a)Adjuvant treatment of endometrial can-
cer based on molecular classification, b)Considering the coverage limitations of NGS for detecting p53 loss, a combined IHC approach is 
recommended. The TCGA approach results in the molecular stratification of endometrial cancer (EC) into four distinct molecular groups 
[137]; (1) ultramutated [> 100 mut/Mb)] with pathogenic variations in the exonuclease domain of DNA polymerase epsilon (POLE)-ultra-
mutated (POLEmut), (2) hypermutated (10-100 mut/Mb), microsatellite-unstable, (3) somatic copy number-high with frequent pathogenic 
variants in TP53, and (4) an MMR-proficient, low somatic copy number aberration subgroup with a low mutational burden. Extensive 
research on these surrogate markers has revealed a strong correlation with clinical outcome, thus proving their prognostic value [138-140]. 
POLEmut EC had generally has an excellent clinical outcome, while p53-abn EC has the worst, regardless of risk category, type of adjuvant 
treatment, tumor type, or grade. Adjuvant chemotherapy is beneficial in for patients with p53mut EC, while treatment de-escalation is 
being explored in patients with POLEmut EC [139], which exhibits a favorable outcome [141]. Consequently, all EC pathology specimens 
should undergo molecular classification, independent of histological type, using well-established IHC staining for p53 and MMR proteins 
(MLH1, PMS2, MSH2, MSH6), in conjunction with targeted tumor sequencing (POLE hotspot analysis). While POLE hotspot analysis is 
currently unavailable in Korea, and most NGS panels include the POLE gene, it has been incorporated into the recommendations. Moreo-
ver, since IHC plays a well-established role in identifying p53 mutations and NGS target sequencing of TP53 is insufficient to identify all 
loss of P53 function, IHC confirmation of p53 is recommended over NGS testing as a priority.

Table 12.  List of genomic alterations level 1/2/3A according to K-CAT in advanced ovarian cancer

Gene	 Alteration	 Prevalence (%)	 K-CAT	 Reference

BRCA 1/2	 Oncogenic mutations	 5-15	 1	 [142-149]
HRD score	 GIS, LOH	 50	 1	 [142-144,146,148]
AKT1	 E17K	 2	 2	 [84]

GIS, genomic instability scores; HRD, homologous recombination deficiency; K-CAT, Korean Precision Medicine Networking Group scale 
of Clinical Actionability of molecular Targets; LOH, loss of heterozygosity.

Table 13.  List of genomic alterations level 1/2/3A according to K-CAT in advanced urothelial cancer

Gene	 Alteration	 Prevalence (%)	 K-CAT	 Reference

FGFR3	 Oncogenic mutations 	 13-15	 1	 [150]
	 Rearrangement/Fusions	
FGFR2	 Rearrangement/Fusions	 Unknown	 1	 [150]
ERCC2	 Oncogenic mutations	 9-12	 3A	 [151,152]
K-CAT, Korean Precision Medicine Networking Group scale of Clinical Actionability of molecular Targets.
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1/2 mutation test is recommended to evaluate the potential 
benefits of PARP inhibitors as maintenance treatment for 
patients whose tumors have not progressed after first-line 
platinum-based chemotherapy [117]. In castration-resistant 
prostate cancer, it is recommended to assess by sequenc-
ing for BRCA 1/2 mutations, at a minimum, using germ- 
line and/or somatic tumor DNA [153,202]. To date, insuffi-
cient evidence is available regarding the benefit of perform-
ing a HRD functional assays to predict response to PARP 
inhibitor; however, the potential for using functional assays 
in conjunction with HRR gene tests and genomic tests should 
be evaluated. While there have been multiple NGS assays to 
evaluate HRD status, only a limited number of tests are clini-
cally accepted, and their technical details including evalua-

tion criteria are unclear. Many methodological approaches 
have been proposed to measure HRD status using NGS 
data of various types, including whole genome sequencing 
(WGS), whole exome sequencing (WES) and targeted sequ-
encing [203,204]. However, the absence of congruent meas-
ure remains a challenge to validate their reliability and con-
sistency. Although WGS has not yet been approved for the 
diagnosis of HRD, it might become a promising diagnostic 
tool for HRD in the near future.

�2) Microsatellite instability-high/mismatch repair defici-
ency 
MSI-H/MMR-D has become an important biomarker of 

eligibility for immune checkpoint inhibitor (ICI) therapy as 

Miso Kim, Recommendations for the Use of NGS in Solid Cancer

Table 14.  List of genomic alterations level 1/2/3A according to K-CAT in advanced prostate cancer

Gene	 Alteration	 Prevalence (%)	 K-CAT	 Reference

BRCA2	 Germline and/or somatic  	 3-13	 1	 [153,154]
	   oncogenic mutations
BRCA1 	 Germline and/or somatic 	 1	 1	 [153,154]
	   oncogenic mutations 
ATM	 Oncogenic mutations 	 6-7	 1	 [153,154]
BRIP1, BARD1, 	 Oncogenic mutations	 < 1-5	 1	 [153,154]
  CDK12, CHEK1, 
  CHEK2, FANCL,
  PALB2, RAD51B, 
  RAD51C, RAD51D, 
  RAD54L  	
K-CAT, Korean Precision Medicine Networking Group scale of Clinical Actionability of molecular Targets.

Table 15.  List of genomic alterations level 1/2/3A according to K-CAT in advanced kidney cancer

Gene	 Alteration	 Prevalence (%)	 K-CAT	 Reference

VHL	 Germline oncogenic mutations	 0.2	 1	 [155]
FH	 Germline oncogenic mutations	 0.5	 3A	 [156,157]
ALK	 Rearrangement/Fusions	 0.3-0.5	 3A	 [158]
K-CAT, Korean Precision Medicine Networking Group scale of Clinical Actionability of molecular Targets.

Table 16.  List of genomic alterations level 1/2/3A according to K-CAT in advanced melanoma

Gene	 Alteration	 Prevalence (%)	 K-CAT	 Reference

BRAF	 V600E/K	 35-50	 1	 [11,159-162]
	 V600 (excluding V600E/K)	 ~5	 1	 [163]
KIT	 D579del and 12 other 	 1-7	 2	 [164,165]
	   oncogenic mutations
NRAS	 Oncogenic mutations	 ~20	 2	 [166,167]
BRAF	 Rearrangement/Fusions	 3-7	 3A	 [168,169]
	 K601, L597	 < 1	 3A	 [170-173]
K-CAT, Korean Precision Medicine Networking Group scale of Clinical Actionability of molecular Targets.
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the FDA has approved ICIs for patients with unresectable or 
metastatic MSI-H/MMR-D solid cancers regardless of tumor 
types [9,40,205]. The polymerase chain reaction (PCR)–based 
assessment of selected microsatellite loci in a patient’s tumor 
and matched non-neoplastic tissue had been accepted as 
the gold standard method before the era of NGS. Neverthe-
less, the PCR-based MSI test can be misleading in certain 
cases because the selected microsatellite loci (typically, 5 to 
8 loci) may not cover all affected microsatellite regions [206]. 
Alternatively, MMR-D can be inferred through immunohis-
tochemistry (IHC) of MMR proteins, such as MLH1, MSH2, 
MSH6, and PMS2, since most MMR-deficient tumors exhi-
bit a loss of MMR protein expression. However, there are 
limitations to detecting MMR-D by the IHC method. Certain 
tumors harboring pathogenic missense or in-frame inser-
tion/deletion mutations of MMR genes may still show intact 
MMR protein expressions, and interpretation errors may 
occur when the staining quality is poor.

Since NGS is now widely used in clinical practice, it has 
been investigated whether NGS can be used to detect MSI-
H/MMR-D in clinical setting. Numerous validation studies 
have demonstrated that NGS can accurately detect pathogen-
ic or likely pathogenic mutations affecting MMR genes and 
can determine MMR-D reliably. Thus, there is a consensus 
that NGS can replace the standard PCR-based MSI test. NGS 
can detect MSI-H/MMR-D in various ways [207]. Several 
computational tools for detection of MSI-H/MMR-D using 
NGS data are available: mSINGS [208], MSIsensor [209], 
MANTIS [210], and MOSAIC [211]. Furthermore, NGS can 

detect MSI-H/MMR-D even in the absence of the patient’s 
matched normal tissue [212,213]. Furthermore, pathogenic 
or likely pathogenic MMR gene mutations detected by NGS 
testing may select candidates of germline genetic testing for 
Lynch syndrome. Finally, NGS-based MSI-H/MMR-D test-
ing may provide information about eligibility for immuno-
therapy in tumor types where MMR IHC and/or PCR-based 
MSI tests have not been done during routine clinical practice.

3) Analysis of TMB by NGS panel
ICIs can enhance a durable anti-tumor immune response 

and prolong overall survival [214]. However, only a subset of 
the patients showed a dramatic response to immunotherapy, 
and the identification of predictive biomarkers was essen-
tial to identify responders to immunotherapy, such as pro-
grammed death-ligand 1 expression, MSI-H/MMR-D and 
TMB-H [215-217]. TMB is defined as the number of somatic 
mutations (mut) per megabase (Mb) of genomic sequence 
[217]. TMB is a surrogate marker for making immunogenic 
neopeptides shown on the surface of tumor cells by major 
histocompatibility complexes, which affect the anti-tumor 
immune response to ICIs [218,219].

In June 2020, the FDA authorized pembrolizumab for the 
treatment of adult and pediatric patients with unresectable 
or metastatic TMB-H (≥ 10 mut/Mb) solid tumors, as deter-
mined by FoundationOneCDx assay, that have progressed 
following prior treatment and who have no satisfactory 
alternative treatment options [220]. Therefore, determining 
the TMB value and identifying TMB-H tumors are among 
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Table 17.  List of genomic alterations level 1/2/3A according to K-CAT in advanced sarcoma

Gene	 Alteration	 Prevalence (%)	 K-CAT	 Reference

KIT	 Oncogenic mutations	 ~75-80 in GIST	 1	 [174,175]
PDGFRA	 Oncogenic mutations	 ~8-10 in GIST	 1	 [175-177]
PDGFB	 Rearrangement/Fusions mostly 	 ~90 in DFSP	 1	 [178-179]
	   COL1A1::PDGFB
ALK	 Rearrangement/Fusions	 ~50 in IMT	 1	 [180-182]
SMARCB1	 Deletion	 ~83 in ES 	 2	 [183]
IDH1	 Oncogenic mutations	 ~65 in chondrosarcoma	 2	 [184]
TSC2	 Oncogenic mutations	 ~30 in PEComa	 2	 [185,186]
MDM2	 Amplification	 ~90 in WDLPS/DDLPS; 	 2	 [187,188]
		    frequent in IS, low grade OSA	
CDK4	 Amplification	 ~90 in WDLPS/DDLPS; 	 2	 [187,189]
		    frequent in IS, low grade OSA 	
MET	 Oncogenic mutations,	 < 1	 2	 [190]
	   Rearrangement/Fusions, 	
	   Amplification	

DFSP, dermatofibrosarcoma protuberans; ES, epithelioid sarcoma; GIST, gastrointestinal stromal tumor; IMT, inflammatory myofibroblas-
tic tumor; IS, intimal sarcoma; K-CAT, Korean Precision Medicine Networking Group scale of Clinical Actionability of molecular Targets; 
OSA, osteosarcoma; WDLPS/DDLPS, well-differentiated/de-differentiated liposarcoma.
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the most critical aspects in the clinical NGS analysis.
Although the TMB calculation can vary according to the 

test assays, the gold standard method for TMB estimation is 
WES with tumor tissues and matched normal samples. How-
ever, since WES has limitations in terms of time and costs to 
apply in clinical use, analytic methods and algorithms have 
been developed for calculating TMB from clinical targeted 
NGS panel tests [221,222]. Targeted NGS panel tests usually 
cover only a small limited size (about 1 to 2 Mb) of exonic 
regions, so sophisticated bioinformatic algorithms and statis-
tical methods must be applied to filter out noise variants and 
artifacts caused by formalin-fixed tissues. For tumor-only 
sequencing, which is currently conducted in most targeted 
gene panels in Korea, germline variants are filtered out using 
genomic information from public databases or data on allele 
frequency in normal populations to avoid TMB overestima-
tion. In several studies, the evaluated TMB from targeted 
NGS panel testing showed a high correlation with the TMB 
calculated by WES using analytic techniques [221,222].

Since the targeted gene panels currently used in the clin-
ic have different analysis pipelines for variant calling and 
apply various filtering criteria to select variants used in TMB 
calculation, TMB values vary among the tests, and the crite-
ria for TMB-H are diverse [223]. Also, the distribution of 
TMB values and criteria for TMB-H are different by tumor 
type, even when calculating TMB with the same panel. In 
general, more than TMB of 10 mut/Mb has been used for the 
definition of TMB-H tumors, but the reliable value of TMB-H 
can be different among the test panels and requires caution 
in interpreting the estimated TMB value. In some studies, 
the TMB of 17-20 mut/Mb is considered TMB-H and a can-
didate for immunotherapy conservatively [224]. Therefore, 
standardization of TMB analysis among test panels, valida-
tion of TMB-H tumors with different assays, and establish-
ing reliable criteria for TMB-H will be needed for the further 
precise application of TMB analysis with the clinical tumor 
NGS panels.

�4) Clinical utility and limitations of ctDNA-based genet-
ic panel tests using blood sample
As the growing number of druggable oncogenic driv-

ers has been identified in solid cancer [225], ctDNA-based 
approach can be used as an alternative approach for facili-
tating the identification of tumor tissue genotype. However, 
ctDNA can be influenced by multiple preanalytical factors 
and the methodology of analysis [226]. Since the ctDNA 
detection rate is highly related to tumor burden and is affect-
ed by various factors such as plasma levels of ctDNA, assay 
sensitivity, and tumor biology, a negative result from the ctD-
NA test may not necessarily indicate a true negative. In par-
ticular, low analytical sensitivity may occur because ctDNA 

assay are performed solely on DNA derived from tumor cells 
[227]. Recent studies have reported that gene fusions and 
splice variants have higher detection rates when sequencing 
is performed with RNA transcripts [228,229]. In addition, in 
the case of copy number variations (CNVs), determining the 
presence of CNVs remains challenging due to its depend-
ence on ctDNA fractions [230,231]. Hence, ctDNA-based test 
reports should include essential elements, including pre-ana-
lytical elements, sequencing results, potential factors related 
to the germline variants, and limitations of assays to assist 
the interpretation of the report to the clinician [232].

ctDNA-based genotyping can be used as either comple-
mentary to tissue genotyping or as the first choice in certain 
circumstances. ctDNA-based genotyping has advantages 
over tissue-based genotyping in a short turnaround time, 
invasiveness, and feasibility in serial assessment [233-235]. 
Due to the limitation of tissue-based genotyping, which can 
be affected by tissue accessibility or tumor purity, ctDNA-
based genotyping can be conducted as initial genotyping 
in the rapidly growing aggressive tumor when challenges 
or delays in sample acquisition are anticipated. In addition, 
the ctDNA-based genotyping first approach can be preferred 
for the evaluation of emerged resistance mechanism [236]. 
ctDNA-based genotyping can also be used as a complemen-
tary method, either concurrently or sequentially with tissue-
based genotyping in case of incomplete tumor genotyping 
or foreseen inadequate results due to uncertain adequacy of 
tissue [237]. 

Before genotyping ctDNA sequences, the concentration 
of cell-free DNA in plasma can be used as a prognostic bio-
marker [238,239]. The sensitivity of ctDNA assay varies 
among the primary sites and tumor types and should be 
considered at applying ctDNA test in clinical use [240]. Simi-
larly, the metastatic site of the tumor affects the ctDNA detec-
tion and should be taken into account for using ctDNA assay 
[241]. Additionally, MSI-H/MMR-D and TMB-H, as deter-
mined by ctDNA assay, have been widely studied [242-244]. 
Improving the accuracy of the MSI detection and TMB cal-
culation from ctDNA and defining reliable criteria for MSI-
H/MMR-D and TMB-H in the ctDNA assay is anticipated to 
broaden the use of ctDNA tests.

Conclusion

NGS-based genetic testing has become an essential tool in 
treating patients with advanced solid cancers. This report  
provides clinical recommendations for the application of 
NGS in such patients, offering expert opinions on its diagnos-
tic uses, and gene classification in accordance with K-CAT, 
while taking the domestic Korean context into consideration.

Miso Kim, Recommendations for the Use of NGS in Solid Cancer
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As cancer genomics advances and new therapies emerge, 
the current gene classification is subject to dynamic changes, 
and the application of NGS is anticipated to continuously 
evolve. Consequently, healthcare providers and researchers 
are encouraged to stay abreast of the latest advancements in 
the field of precision oncology to ensure optimal patient care 
and further cancer research.
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