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Abstract: In this study, Liquid Chromatography–Mass Spectrometry (LC-MS)-based metabolomics
profiling was conducted to elucidate the urinary profiles of premature infants during early and late
postnatal stages. As a result, we discovered significant excretion of maternal drugs in early−stage
infants and identified crucial metabolites like hormones and amino acids. These findings shed light on
the maternal impact on neonatal metabolism and underscore the beneficial effects of breastfeeding on
the metabolism of essential amino acids in infants. This research not only enhances our understanding
of maternal–infant nutritional interactions and their long−term implications for preterm infants
but also offers critical insights into the biochemical characteristics and physiological mechanisms of
preterm infants, laying a groundwork for future clinical studies focused on neonatal development
and health.

Keywords: metabolomics; premature infant; maternal nutrition; LC−MS; human milk; neurotransmitter;
amino acid

1. Introduction

The nutrition of premature infants is important for health, optimal growth, and devel-
opment. The maternal nutritional status, as the primary source of nutrition, significantly
influences the nutritional status of premature infants. Poor maternal nutrition can lead to
negative birth outcomes, such as low birth weight, and has long−term postnatal effects [1].
Consequently, previous research has focused on maternal–infant substance transfer, includ-
ing aspects of breastfeeding, obesity, and environmental factors [2–4]. Representatively,
breastfeeding, as a primary method of nutrition, has been extensively studied for its impact
on maternal diet, infant microbiota, and disease or allergy prevention [5,6]. The ongo-
ing focus on mother–infant interaction research underscores its significance, especially
for preterm infants with underdeveloped organs. However, previous studies on related
biomolecules have often focused on key nutrients such as ATP, glucose, long−chain fatty
acids, and amino acids [7–11]. This has led to a relative deficiency in the comprehensive
analysis of postnatal metabolic mechanisms in premature infants. Therefore, our study
uses metabolomics profiling of the urine of premature infants to elucidate the influence of
maternal health on infant metabolic activity.
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A previous study on this concept has identified early postnatal metabolic adapta-
tion and maturation alterations, focusing largely on essential energy metabolic cycles
using nuclear magnetic resonance (NMR) [12]. In contrast, our study applies Liquid
Chromatography–Mass Spectrometry (LC−MS) analysis and provides novel insights into
complex molecular mechanisms in premature infants, including a broader examination of
breastfeeding and formula feeding. In particular, LC−MS, known for its higher sensitivity
and wider metabolite detection range, has enhanced our in−depth exploration [13]. Many
studies have collected samples within two weeks after birth as a baseline for investigating
the effects of prematurity, and the first three days after birth are considered an extremely
preterm period for the organs of infants including the brain [14–17]. We analyzed urine
samples from the immediate postnatal period (1–3 days after birth) as the Early group and
two weeks later (13–16 days after birth) as the Late group. Furthermore, we regrouped the
samples into a human milk (HM) group and a formula milk feeding (FM) group to assess
maternal influence and metabolic activity.

Through this approach, we have identified significant metabolic mechanisms in the
urine of premature infants. This suggests new insights into how maternally transferred
metabolites can influence neonatal status. Our non−invasive study contributes to a multi-
faceted evaluation of factors affecting premature infants, leading to a deeper understanding
of their health and developmental processes.

2. Materials and Methods
2.1. Materials

High−performance liquid chromatography (HPLC)−grade water, acetonitrile (ACN),
and methanol (MeOH) were purchased from JT Baker (Philipsburg, NJ, USA). Formic acid
(FA) was purchased from Sigma−Aldrich (St. Louis, MO, USA).

2.2. Methods
2.2.1. Sample Preparation

Urine samples of 10 mL were collected from premature infants aged 1–3 days (Early
group, n = 22) and 13–16 days (Late group, n = 12, serving as the control) and were
subsequently stored at −20 ◦C. We also recorded whether the infants were fed breast milk
(n = 14) or formula milk (n = 20). The HM group included infants who received 100%
human milk and a mixed diet of breast and formula milk, with at least two−thirds breast
milk, while the formula milk group consisted exclusively of infants fed 100% formula
milk. The urine samples were thawed on ice and mixed with a four times larger volume
of chilled MeOH. These mixtures were vortexed for 1 min, centrifuged gently, and then
incubated overnight. After incubation, mixtures were centrifuged at 14,000× g for 10 min.
The supernatants were then transferred to new tubes and dried. Finally, the samples were
resuspended in 0.1% FA and prepared for LC−MS analysis.

2.2.2. LC−MS

Chromatographic separation of the samples was performed using an Agilent ZORBAX
Eclipse Plus C18 Rapid Resolution High−Definition column (2.1 × 50 mm, 1.8 µm particles)
on a Vanquish UHPLC system (Thermo Fisher Scientific, Waltham, MA, USA), equipped
with a Q−Exactive Hybrid Quadrupole−Orbitrap MS (Thermo Fisher Scientific, Waltham,
MA, USA). The mobile phases consisted of 0.1% FA in water (solvent A) and 0.1% FA
in 80% ACN (solvent B), with a flow rate of 200 µL/min. The total gradient time was
set at 30 min: 2.5% B for 0–2 min; 2.5–12% B for 2–11 min; 12–28% B for 11–15 min;
28–60% B for 15–22 min; 60–96% B for 22–22.1 min; 96% B for 22.1–24 min; 96–2.5% B for
24–24.1 min; and finally, 2.5% B for 24.1–30 min. Mass spectrometry was conducted in
positive electrospray ionization mode, equipped with a Heated Electrospray Ionization
Probe, with the resolutions for full−MS and MS/MS scans set at 70,000 and 17,500 (at
400 m/z), respectively. The scanning range was 100–1000 m/z, with an automatic gain
control (AGC) target of 1 × 106, a maximum IT of 100 ms, and a normalized collision energy
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(NCE) for dd−MS2 of 30%. For data analysis, Compound Discoverer 3.3.2.31 (Thermo
Fisher Scientific, Waltham, MA, USA) was used; this workflow for untargeted metabolomics
facilitated retention time alignment and compound identification. MzCloud was employed
to annotate compounds at the MS/MS level. The ChemSpider, Human Metabolome
Database (HMDB), and Kyoto Encyclopaedia of Genes and Genomes (KEGG) databases
were utilized to annotate features based on exact mass, using the internal database of
Compound Discoverer. Chemical background noise was eliminated using a blank file.

3. Results

We analyzed the metabolism of premature infants in early postnatal development to
identify significant molecular mechanisms and enhance our understanding of the biological
relationship between mothers and infants. In this study, a total of 34 urine samples were
collected from premature infants, divided into two groups: an Early group consisting of
infants within 1 to 3 days postnatal and a Late group consisting of infants within 13 to
16 days postnatal. We analyzed the data using LC−MS and applied the Metabolomics Soci-
ety’s Metabolomics Standards Initiative annotation for standardization [18]. The filtration
was performed at Level 2, involving exact mass matching (10 ppm) and a fragmentation
score over 80 in the mzCloud database. As a result, 316 metabolites were identified, and
284 metabolites were used in the final analysis, applying a data filtering process, which
included using an interquartile range variance filter to exclude the least informative 10% of
variables (Table S1).

3.1. Multivariate Analysis

Initially, a multivariate data matrix was simplified using Principal Component Anal-
ysis (PCA) to visualize similarities and differences between the two groups (Figure 1a).
The PCA revealed that PC1 and PC2 accounted for 36.3% and 18.2% of the variance, re-
spectively, distinguishing the groups overall, but some overlap in patterns was observed
in certain samples. Subsequently, Partial Least Squares Discriminant Analysis (PLS-DA)
indicated distinct pattern separation between the Early and Late groups, with the first
two components explaining 35.4% and 10.4% of the variance, respectively (Figure 1b). In
cross−validation, the model with five components achieved an accuracy of 1.0, an R² of
0.995, and a Q² of 0.907, confirming its high efficacy in differentiating the groups (Figure 1c).
Notably, small−scale clustering patterns in each group were consistently observed in both
the PCA and PLS−DA results. To identify the metabolites driving these patterns, the top
30 substances with a Variable Importance in Projection (VIP) score above 1 were selected
(Figure 1d, Table S2). Remarkably, ampicillin was distinguished by a significantly higher
VIP score compared to other metabolites, emerging as a key differentiator between the
groups. Moreover, other drugs such as penicillin−V and pirbuterol, as well as common
urinary metabolites like α−lactose and creatine, were also identified in Figure 1d. Then,
metabolites associated with purine and pyrimidine metabolism, such as hypoxanthine,
guanine, thiamine, and adenosine, were identified as significant. The multivariate analysis
patterns were consistently reflected in a heatmap displaying the quantitative values of each
compound (Figure 2a). The clear separation between the two groups and the small−scale
clusters observed in the PCA and PLS−DA results were further clarified by visualizing
the results in the heatmap. Specifically, in the Early group, certain metabolites showed
quantitative values that indicated overlapping patterns between the groups, reconfirming
the presence of overlaps and specific small−scale clusters. Therefore, additional analysis
was performed to identify specific metabolites.
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Figure 1. (a) PCA plot; (b) PLS−DA plot for Early group (red; n = 22) and Late group (green; n = 12);
(c) Cross−validation of PLS−DA; (d) The top 30 VIP scores. The marker of (*) in (c) represents the
highest value in the performance measure.



Nutrients 2024, 16, 411 5 of 14
Nutrients 2024, 16, x FOR PEER REVIEW 5 of 14 
 

 

 
Figure 2. (a) Heatmap showing the quantitative values of each compound; (b) Volcano plot display-
ing DEMs (fold change (FC) = Early (n = 22)/late (n = 12), p−value < 0.05, |log2(FC)| > 1). 
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Figure 2. (a) Heatmap showing the quantitative values of each compound; (b) Volcano plot displaying
DEMs (fold change (FC) = Early (n = 22)/late (n = 12), p−value < 0.05, |log2(FC)| > 1).

3.2. Differential Analysis

After observing the differences in patterns between groups, differentially expressed
metabolites (DEMs) were identified to specify the significant molecular mechanisms. As
a result, 100 upregulated and 56 downregulated metabolites were identified in the Early
group and visualized in a volcano plot (Figure 2b). Representatively, drug metabolites
including ampicillin, penicillin−V, amoxicillin, and lidocaine were upregulated in the
Early group. Furthermore, purine and pyrimidine metabolism-related metabolites (hy-
poxanthine, guanine, thiamine), steroid hormone−related metabolites (pregnenolone and
5α−pregnan−3,20−dione), and neurotransmitter metabolism−related metabolites (tau-
rine, S−adenosylmethionine, and L−pyroglutamic acid) were mainly upregulated in the
Early group. All DEMs are listed in Table S3.

3.3. Univariate and Multivariate ROC Curve Analysis

In parallel with other results used to select features in the data, we considered the
quantitative regulation of metabolites, VIP scores, and receiver operating characteristic
(ROC) curve analysis results. First, we elaborated and validated the significant DEMs
through univariate ROC curve analysis. In order to select variables with high reliability, we
applied the least absolute shrinkage and selection operator (LASSO) using the R package
“glmnet” to select variables for model establishment (Table S4). This predictive model was
computed using 10−fold cross−validation. As a result, we identified predictive models of
nine metabolites with a good area under the ROC curve and CI, including penicillin−V
(AUC = 0.96, CI = 0.86–1), steroid hormones such as 20β−dihydrocortisol (AUC = 0.96,
CI = 0.83–1), and 17 α−hydroxyprogesterone (AUC = 0.91, CI = 0.78–0.99) (Figure 3,
Table S5). Considering the complexity of the profiling results, driven by interactions
among multiple metabolites as variables, an additional predictive model was constructed
using multivariate ROC curve analysis to supplement a deeper understanding (Table S6).
Multivariate ROC curve analysis was conducted based on Monte Carlo Cross−Validation.
The classification method and the feature-ranking mechanism were performed using the
PLS−DA algorithm. The ROC curves were generated for models with different numbers
of features (5, 10, 15, 25, 50, 100), displaying plots, AUC values, and Cis. The AUC
scores ranged from 0.905 to 0.986 (Figure 4a). In predictive accuracy, the 50−feature panel
of model 5 achieved the highest accuracy, as shown in Figure 4b. However, to avoid
overfitting, we selected the 10−feature panel of model 2. This decision was based on the
AUC values exceeding 0.9 for all ROC curves and similar accuracy predictions for more
than 10 features. The AUC of model 2 was 0.94 with a 95% CI of 0.687–1, visualized in
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Figure 4c. From this predictive model, the most significant 10 markers were classified based
on average importance (Figure 4d). Consistently, ampicillin, choline, and penicillin−V were
significantly reaffirmed and validated in this model as significant metabolites, coordinating
with other analytical results.
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Figure 4. Identification and prediction of key markers between Early group (n = 22) and Late group
(n = 12) using multivariate ROC curve-based exploratory analysis. (a) Overview of all ROC curves
from six distinct predictive models, highlighting their respective AUC values and CI; (b) A chart
depicting the predictive performance of each of the six models, with the highest accuracy indicated
by a red dot for 50−feature panel of model 5; (c) The ROC curve specific to the chosen model 2; (d) A
list of the top 10 significant metabolites, ranked by their average importance of being selected during
cross−validation.

4. Discussion

In this study, we analyzed the differences in urinary metabolites between early− and
late−stage preterm infants, examining the relationship with maternal transfer of metabo-
lites. Furthermore, we restructured the sample groups to screen preterm infant urine
metabolites from various perspectives, focusing on the effects of breastfeeding as a primary
mechanism of substance transfer. The analysis revealed that drugs derived from mothers
were most distinctly detected in the urine of early−stage preterm infants. Subsequently,
significant metabolites related to physiological mechanisms, such as steroid hormones,
amino acids, and nucleic acids, were identified. These findings demonstrate that a variety
of metabolites are definitively transferred from the mother to the infant post−birth, with
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some exogenous substances circulating at high concentrations in the infant’s body and
being substantially excreted between 1 and 3 days post−birth. Furthermore, as a result
of the analysis regrouping the sample into an HM group and an FM group, upregulation
of some essential amino acids and related metabolites was identified in the urine of the
HM group. This underscores the positive impact of breastfeeding on essential amino acid
metabolism. This study provides a non−invasive, fundamental approach to understanding
the biochemical characteristics in preterm infants, underscoring that the identified alter-
ations in metabolites serve as indirect markers for specific molecular mechanisms. These
results are expected to offer novel insights into the multidimensional understanding of the
physiological mechanisms in preterm infants and the factors influencing their development
and health.

4.1. Investigating the Diverse Physiological Mechanisms and Drug Metabolism in Preterm Infant
Urinary Metabolites Using Multivariate Analysis

Initially, this study determined that the metabolite levels in the Early group indicated
considerable variability. This substantial deviation in quantitative values is primarily
attributed to the physiological immaturity in preterm infants, manifesting in underdevel-
oped respiratory [19] and hepatic functions [20,21], among other systems. Reflecting these
differences, multivariate analysis results demonstrated specific patterns influenced by mul-
tifaceted quantitative values. The PCA plot, while showing some overlap between the Early
and Late groups, indicated a high similarity within some samples of the same group, show-
ing a distinction between the two groups overall. This pattern suggests that the variability
in the Early group is driven by biases from certain variables. Subsequently, the PLS−DA
plot emphasized distinctions between the two groups, though minor sub−clusters within
each group were observed. These results imply a significant role of certain variables over
time post−birth, underscoring the necessity for further analysis and identification of these
variables. A similar pattern was also observed in the heatmap analysis. The formation of
small−scale clusters within groups, particularly in the Early group, reaffirmed the hypoth-
esis of considerable variation in the quantitative values of specific variables. This finding
highlights the complexity of physiological processes in preterm infants and the need for
comprehensive multi−variable analysis to better understand these mechanisms. This study
aimed to identify key variables contributing to the multidimensional characteristics of
the metabolome in our samples. Our approach involved constructing various predictive
models and conducting quantitative comparative analyses. Initially, the PLS−DA model
highlighted ampicillin as the most significant variable based on its high VIP score and
average importance in multivariate ROC curve analysis. Notably, ampicillin has been
extensively reported in various studies, including its use in infant fever [22], pharmacoki-
netics [23,24], and preterm infants [25,26]. Additionally, penicillin−V was also identified
as a significant metabolite, exhibiting a high VIP score and average importance. While
penicillin antibiotics are known for their safety and low toxicity in neonates, the severity
of the use of empirical antibiotics in preterm infants has also been reported [27,28]. The
detection of these drugs in high concentrations in urine and systemic circulation suggests
a significant association between material transfer between preterm infants and mothers.
Particularly, these findings also suggest the influence of external factors such as maternal
nutritional status and treatment methods on the metabolism of preterm infants. However,
future studies must recognize the potential impact of these substances as significant con-
founding factors in experiments. This underscores the importance of employing refined
methodologies to comprehend intricate interactions in neonatal metabolism.

4.2. Identification of Differential Metabolites in Preterm Infants’ Urine over Time via Differential
Expression Analysis

Subsequently, we identified DEMs in preterm infants’ urine to investigate by com-
paring quantitative alterations post−birth. To select significant DEMs, we considered
VIP score values and results from univariate and multivariate ROC curve analyses. The
compound−related functionally significant DEMs were investigated as a priority. As a



Nutrients 2024, 16, 411 9 of 14

result of cross−validating various analysis methods with high reliability, we confirmed
specific physiological mechanisms post−birth, particularly in drugs, hormones, nucleic
acids, and amino acid metabolism. Initially, in the Early group, ampicillin showed the
highest log2(FC), identified as the most statistically significant variable in multivariate
analyses. Different drugs like penicillin−V, amoxicillin, and lidocaine were also upregu-
lated in the Early group. Considering the compromised immunity in pregnant women
and the necessity for drugs in childbirth, drugs such as amoxicillin and ampicillin, clas-
sified as penicillin−V, along with lidocaine, are known to be safe and have low toxicity
for fetuses [29,30]. Our results show that these exogenous metabolites were directly trans-
ferred in high concentrations to preterm infants, being excreted in significant amounts after
circulating within 1–3 days. However, carefully administering these drugs is necessary,
considering the immature hepatic metabolism in preterm infants [31]. Next, significant
biological mechanisms involving steroid hormones, purine and pyrimidine metabolism,
and amino acid metabolism were also identified. First, DEM−related steroid hormones
like 20β−dihydrocortisol, 17α−hydroxyprogesterone, and pregnenolone indicate which
specific hormones play important roles in development. Steroid hormones function as
essential metabolites in various physiological processes, including development [32,33] and
metabolism [34]. Previous research has reported quantitative hormonal alterations in the
urine of premature infants during the transition from the types required for intrauterine and
independent life [34]. Among these, 20β−dihydrocortisol and 17α−Hydroxyprogesterone
were significantly identified in univariate ROC curve analysis and downregulated in the
Early group. Research on 20β−dihydrocortisol, a post−metabolic product of cortisol,
was reported as a biomarker for Cushing’s syndrome through urine concentration mea-
surements [35]. Additionally, the investigation extends to 17α−Hydroxyprogesterone,
a steroid hormone involved in adrenal biosynthesis, transitioning from cholesterol to
cortisol [36]. The differential levels of cortisol−related metabolites in preterm infants,
depending on the gestational period, underscore their significance in assessing health
status [37]. Other upregulated hormone−related substances include pregnenolone as a
precursor to steroid hormones [38], 5α−Pregnan−3,20−dione as a neuroactive steroid syn-
thesized from progesterone during fetal development [39], and estriol as a weak estrogen
involved in excretion [40]. These differential expressions indirectly provide significant
insights into how maternal hormonal states affect metabolic adaptation in preterm infants.

Likewise, some neurotransmitters, similar to hormones, were also differentially ex-
pressed in the urine of premature infants. Notably, choline, a precursor to the neuro-
transmitter acetylcholine and vital for brain differentiation and function, exhibited down-
regulation in the Early group [41,42]. Choline was identified as a significant metabolite
based on its high VIP score and average importance in multivariate ROC curve analysis.
Previous research has shown higher concentrations of maternal choline during pregnancy
and urinary concentration, with newborns displaying high plasma free choline levels
initially, which decrease within the first week [43]. Coupled with this, thiamine was the
most significantly downregulated metabolite. Thiamine is a water−soluble vitamin B1
and plays a direct role in the synthesis and release of acetylcholine, with its deficiency
linked to reduced acetylcholine levels [44,45]. Considering these, the downregulation
of two significant metabolites in the Early group suggests potential negative markers
for cognitive and behavioral development in preterm infants. Conversely, other DEMs
such as taurine, S−adenosylmethionine, and L−pyroglutamic acid showed significant
VIP scores and upregulation trends in the Early group. Taurine, known to function as a
neurotransmitter or modulator, has been indicated as a marker for muscle damage from
severe exercise [46], while L−pyroglutamic acid is closely related to the major neurotrans-
mitter glutamate and found in high concentrations in urine [47]. Moreover, the increase in
neurotransmitter−related metabolite concentrations suggests that these DEMs might be
markers of brain diseases or neurodevelopmental disorders for use in urine−based studies
of preterm infants. From another perspective, some purine and pyrimidine metabolism−
and amino acid−related metabolites were also identified as significant DEMs, participating
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in fundamental biological mechanisms due to their role in DNA composition, genetic
factors, cellular structure, and energy production [48–50]. In this study, we observed
significant upregulation of hypoxanthine and guanine in the Early group of infants with
significant VIP scores and average importance. Hypoxanthine is a primary breakdown
product of ATP, and guanine is a representative nucleic acid of DNA building blocks [51].
According to previous research, high urinary hypoxanthine levels can be related to res-
piratory disorders and deficiencies in hypoxanthine–guanine phosphoribosyltransferase
to acute renal failure in infants [52,53]. Additionally, 7−methylguanosine, the modified
purine nucleoside, showed significant VIP scores, associated with ischemic diseases and
identified as a biomarker in cancer studies [54,55]. In brief, these upregulations suggest
significant metabolic mechanisms related to kidney and respiratory development. Fur-
thermore, amino acids, essential for protein construction and energy in preterm infants,
were also notably identified [56]. Among the notable DEMs, acetyl−L−carnitine associated
with catabolic and anabolic metabolism in the brain as an endogenous intermediate [57],
N−acetyl−L−tyrosine administered for stability and enhanced solubility in premature
infants during the first postnatal week [58], and other energy metabolism substances such
as hexanoylcarnitine [59], as well as fundamental amino acids such as L−tyrosine and
L−phenylalanine, have been identified. Amino acids are multifunctional and actively
under investigation from various perspectives. Consequently, imbalanced urinary con-
centrations of amino acids and associated metabolites are indicative of their influence
on maternal conditions and neonatal metabolic stress, encouraging deeper exploration
associated with these results.

4.3. Efficacy of Human Milk in Premature Infants from a Substance Transfer Perspective and
Essential Amino Acids

In this study, we aimed to explore the additional metabolomic profile using preterm
infant urine, focusing on another perspective. To investigate this, we regrouped our
sample cohorts based on the intake of HM versus FM. Through additional analysis, we
revealed that human milk consumption plays a significant role in the supply of essential
amino acids. The PCA plot did not show a distinct separation between the HM and
FM groups, likely due to the high concentration of specific substances like ampicillin
(Figure S1). Nevertheless, among the 12 identified DEMs, isoleucine, imidazolelactic
acid, and DL−β−leucine exhibited an intriguing upregulation in the HM group (Figure 5,
Table S7). Isoleucine, an essential amino acid involved in the tricarboxylic acid cycle,
serves as a fundamental factor in energy metabolism, as well as supplying acetyl−CoA,
which is a crucial intermediary in neurotransmitter and steroid synthesis [60,61]. The
detection of imidazolelactic acid in urine, which is produced through the breakdown of
histidine by an alternative pathway in the absence of histidase, has been reported in several
studies [62,63]. Histidine is particularly essential in infancy, and underscored in conjunction
with L−tyrosine, previously identified as significant. This characteristic arises due to the
immature enzymatic systems in newborns, highlighting their critical metabolic role in
preterm infants [64,65]. DL−β−leucine is a less abundant β−amino acid compared to its
α−analogues but exists in nature both in free-form and peptide−bound states. Although
little research has been conducted, previous research for gestational diabetes mellitus using
LC−MS has identified it, suggesting its potential specific functions as analogs of leucine,
one of the essential amino acids, in preterm infants [66]. In summary, the upregulation of
certain essential amino acids in the HM group indicates a significant impact on metabolism
immediately after preterm birth. By focusing on breastfeeding influence in terms of direct
nutrient delivery, we investigated its impact. This suggests that human milk feeding,
compared to formula feeding, might be more effective in delivering these amino acids that
are crucial for development. Certainly, further research is required for a full understanding
of the biological meaning, but the accumulation of such data may provide insights into
the relationship and molecular mechanisms between the mother and preterm infant in
future studies.
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5. Conclusions

In this study, we used metabolomics to analyze differences in urine metabolites be-
tween early− and late−stage preterm infants. As a result, drugs derived from mothers
were most prominently detected in the urine of early−stage preterm infants, confirm-
ing substantial excretion within 1–3 days post−birth. Various key metabolites, includ-
ing hormones such as pregnenolone and 20β−dihydrocortisol, purine and pyrimidine
metabolism-related metabolites like hypoxanthine and guanine, neurotransmitters includ-
ing choline and L−pyroglutamic acid, and amino acids such as acetyl−L−carnitine and
L−tyrosine, were identified through good predictive models and differential expression
analysis, demonstrating statistically validated suitability and performance. Our study used
LC−MS to analyze urine samples from preterm infants, similar to previous research, but
our approach revealed unique physiological mechanisms, demonstrating that LC−MS
offers essential insights into the intricate metabolic processes of preterm infants, despite
using similar samples and controls. Additionally, this study suggests the potential involve-
ment of substances in preterm infant development and highlights the positive impact of
breastfeeding on essential amino acid metabolism. The non−invasive sampling and high
sensitivity of this research indirectly indicate the association between mothers and pre-
mature infants, providing insights into their biochemical characteristics and physiological
mechanisms. Furthermore, the identification of significant metabolites serving as indirect
markers for specific molecular mechanisms contributes to the understanding of preterm
infant physiology and potential biomarkers for specific clinical studies.
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