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Background/Aims: Diesel exhaust particles (DEPs) lead to elevation of reac-
tive oxygen species, which can activate the nucleotide-binding oligomerization 
domain-like receptor (NLR) family members containing the pyrin domain 3 
(NLRP3)-inf lammasome. In this study, we elucidated whether NLRP3 -inf lam-
masome is activated by DEPs and whether antioxidants (N‑acetylcysteine [NAC]) 
could inhibit such activation. 
Methods: RAW 264.7 cells and ex vivo lung tissues explants obtained from elas-
tase-induced emphysema animal models were stimulated with cigarette smoking 
extract (CSE), DEPs, and lipopolysaccharide, and levels of interleukin-1β (IL-1β), 
caspase-1 and nucleotide-binding oligomerization domain-like receptor (NLR) 
family members containing the pyrin domain (NLRP3)-inflammasome were as-
sessed by Western blotting and immunohistochemistry. 
Results: NAC and caspase-1 inhibitor suppressed CSE- and DEP-induced secretion 
of IL-1β in RAW 264.7 cells. The expression levels of the NLRP3-inflammasome 
and caspase-1 were upregulated in RAW 264.7 cells by stimulation with CSE and 
DEPs and were inhibited by NAC. CSE and DEPs increased the secretion of IL-1β 
in lung tissues from both the normal and elastase-induced emphysema groups. 
The secretion of IL-1β by CSE and DEPs was increased in the elastin-induced em-
physema group more than that in the normal group (CSE: 309 ± 19 pg/mL vs. 151 ± 
13 pg/mL, respectively, p < 0.05; DEP: 350 ± 24 pg/mL vs. 281 ± 15 pg/mL, respective-
ly, p < 0.05). NAC inhibited CSE- and DEP-induced IL-1β secretion in both the nor-
mal and elastase-induced emphysema groups. NLRP3-inflammasome expression 
as determined by immunohistochemistry was increased by CSE and DEPs in both 
the normal and elastin-induced emphysema groups, and was suppressed by NAC. 
Conclusions: The NLRP3-inf lammasome is activated by DEPs in ex vivo tissue 
explants from elastase-induced emphysema animal model, and this activation is 
inhibited by NAC. 
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INTRODUCTION 

Chronic obstructive pulmonary disease (COPD) is de-
fined as a common, preventable, and treatable disease 
characterized by limited airflow that is persistent, typi-
cally progressive, and associated with chronic pulmo-
nary inflammatory responses to noxious particles and 
gases [1]. The incidence of COPD has increased in the 
past few decades and is estimated to be ranked as the 
third most common cause of death by 2020 [2]. A pre-
vious cross-sectional study reported that the mortality 
rate increases to 2.5% in COPD patients with acute exac-
erbation of COPD (AECOPD) [3]. In addition, acute exac-
erbation can reduce long-term survival of patients with 
COPD [4]. The two known common causes of AECOPD 
appear to be respiratory infections and air pollution. 

The inflammasome consists of nucleotide-binding 
oligomerization domain-like receptor (NLR) fami-
ly members containing the pyrin domain (NLRP), the 
adaptor molecule apoptosis-associated speck-like pro-
tein containing a CARD (ASC) domain, and caspase-1 
[5]. In response to pathogens, sterile tissue damage, and 
metabolic stress, NLRP3 binds to procaspase-1 through 
ASC, subsequently activating caspase-1. Activation of ca-
pase-1 leads to maturation of interleukin-1β (IL-1β) [5,6]. 
Recently, the NLRP3-inflammasome has been hypoth-
esized to be involved in the pathogenesis of COPD, al-
though no direct evidence has been reported. Cigarette 
smoking elevates IL-1β levels in the human lung [7]. IL-
18, a member of the IL-1 cytokine family, is also elevated 
in the sputum and serum of patients with COPD [8,9]. 
These findings suggest that inflammasome is closely 
related to the pathogenesis of COPD. Furthermore, AE-
COPD may be related to NLRP3-inflammasome because 
about two-thirds of AECOPD cases are associated with 
viral or bacterial infection of the respiratory tract [10], 
which leads to activation of the NLRP3-inflammasome. 
In fact, nontypeable Haemophilus influenzae-induced in-
flammation in respiratory cells and tissues results in the 
upregulation of NOD-like receptor pyrin domain-con-
taining 3 (NLRP3)-inflammasome [11]. This finding sug-
gests a certain role of the activation of NLRP3-inflam-
masome in the pathogenesis of AECOPD. 

Diesel exhaust particles (DEPs) produced by diesel en-
gine vehicles is an important constituent of particulate 
matter air pollution [12,13]. Because of the large number 

of hazardous chemicals present, inhalation of DEPs like-
ly exert harmful effects on the airways of COPD patients. 
These harmful effects are suggested by the findings of 
increased secretion of proinflammatory cytokines and 
reactive oxygen species induced by DEPs [14,15]. DEP 
exposure leads to elevation of reactive oxygen species, 
which can activate the NLRP3-inflammasome [16]. 
Therefore, we speculated that DEP-induced activation 
of NLRP3-inflammasome may be related to the patho-
genesis of AECOPD. 

In the present study, we investigated whether the NL-
RP3-inflammasome is activated in an elastase-induced 
emphysema model by challenge with DEPs, and wheth-
er antioxidants inhibit DEP-induced activation of the 
NLRP3-inflammasome in vitro. 

METHODS

Cell culture 
RAW 264.7 cells were cultured at 37°C in 5% CO2 in Dul-
becco’s modified Eagle’s medium (DMEM) medium 
(Gibco, Langley, OK, USA) supplemented with 10% heat-
inactivated fetal calf serum (Gibco), 50 IU/mL penicillin, 
and 100 mg/mL streptomycin. Cells were subcultured 
every 3 to 4 days and seeded at 106/mL in six-well plates 
(Nalge Nunc, Rochester, NY, USA). 

Animals 
Experiments protocols were performed according to the 
Guidelines for the Care and Use of Laboratory Animals 
of the National Health Institute, and were approved by 
the Animal Ethics Committee of Soon Chun Hyang 
University Bucheon Hospital (SCHBC-animal-201409). 
C57BL/6 female mice, at 12 weeks of age, were purchased 
from Central Lab Animal Inc. (Seoul, Korea) and were 
used in the present study. The animals were housed in 
a temperature- and humidity-controlled room with free 
access to water and standard laboratory food. Mouse 
pulmonary emphysema was induced by one-time intra-
tracheal administration of 15 μg of porcine pancreatic 
elastase (PPE) (E788, Sigma-Aldrich, St. Louis, MO, USA) 
in 50 μL of phosphate-buffered saline (PBS) while con-
trol mice received 50 μL of sterile PBS [17]. After 3 weeks 
of intratracheal instillation, animals were euthanized. 
Each group consisted of 12 mice, of which six were used 
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for lung histology and bronchoalveolar lavage (BAL) and 
the other six for ex vivo explants culture. For the explants 
culture, six pieces of lung tissues (20 to 30 mg/each) were 
treated similarly as the cell culture. 

Preparation of cigarette smoking extract 
The cigarette smoking extract (CSE) was produced us-
ing a modification of the method of Smelter et al. [18]. 
Briefly, a 50-mL plastic syringe was attached to the 
smoking apparatus (Smoking Tester System, Three 
Shine Inc., Daejeon, Korea) in the atmosphere. Smoke 
(35  mL) from Korean cigarettes (THIS, KT&G, Seoul, 
Korea) were slowly drawn into the attached syringe and 
passed through 30 mL of cell culture medium (DMEM). 
The CSE solution was then filtered and used within 30 
minutes. The concentration of the CSE solution thus 
produced was considered to be 100%.

In vitro cell culture 
After 18 hours of starvation, cells were stimulated with 
various concentrations of CSE (5% to 30%), DEPs (5% 
to 30%) (Diesel Particular Matter; Standard Reference 
Material 1650b; average particle diameter 0.18 μm; sur-
face area, 108 m2/g; National Institute of Standards and 
Technology, Gaithersburg, MD, USA), or 1 mg/mL lipo-
polysaccharide (LPS) as the positive control. The con-
centration and stimulation time of CSE and DEPs were 

analyzed by measuring the IL-1β level in the culture 
supernatant of RAW 264.7 cells. The IL-1β concentra-
tion was maximal at the 10% dilution after 24 hours of 
stimulation with CSE and DEP (Fig. 1). RAW cells and 
elastase-treated lung explants were stimulated with 10% 
CSE, DEPs, and 1 mg/mL LPS with or without 10 μM 
N-acetylcysteine (NAC) or 100 μM of the caspase-1 inhib-
itor, Z-YVAD-FMK (Calbiochem, Darmstadt, Germany). 

Bronchoalveolar lavage
BAL was performed as described previously [19]. Briefly, 
BAL fluid was obtained by instilling a total volume of 
1.5-mL saline into the lungs three times through a tra-
cheal tube. The BAL fluid was centrifuged (150 ×g, 10 
minutes, 4°C), and the cell pellet was resuspended in 1 
mL of PBS. A 50-μL volume of the suspension was mixed 
with the same volume of 4% trypan blue to determine 
the cell numbers and viability. To perform differential 
cell counts in BAL fluid, 5 × 103 cells were mounted on 
a slide by cytocentrifugation and stained with Diff-Quik 
(Baxter Healthcare, Miami, FL, USA).

Tissue preparation and fixation
Following BAL, the chest wall was opened. The lungs 
were inflated with 10% phosphate-buffered formalin at 
a transpulmonary pressure of 25 cmH2O for 1 hour. The 
tissues were embedded in paraffin wax and were cut for 
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Figure 1. (A) Interleukin-1β (IL-1β) secretion by RAW 264.7 cells after 24-hour incubation with various concentrations of cig-
arette smoking extract (CSE) and diesel exhaust particles (DEPs). IL-1β secretion peaked at a 1:10 dilution of both CSE and 
DEPs. (B) IL-1β secretion by RAW 264.7 cells at 4 to 24 hours in the presence of a 1:10 dilution of CSE, DEPs, or 1 mg/mL lipo-
polysaccharide (LPS). IL-1β secretion peaked at 24 hours for LPS and DEPs; however, CSE resulted in a plateau after 6 hours. 
The data shown are representative of three independent experiments. 
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H&E staining. Cultured lung tissue explants were em-
bedded in paraffin wax blocks and were cut for immu-
nohistochemical staining for NLRP3 and caspase-1. 

IL-1β assay
Cell and tissue culture supernatants were collected by 
centrifugation to remove cellular debris. Supernatants 
were stored as aliquots at –70°C until use. IL-1β was as-
sayed using a Quantikine ELISA kit (R&D Systems, Min-
neapolis, MN, USA), as described by the manufacturer. 

Mean linear intercept 
To calculate the change in alveolar destruction, we mea-
sured the air space size using the mean linear inter-
cept (MLI) according to a modified method described 
previously [20]. Briefly, after paraffin embedding, 5-μm 
sections were cut and stained with H&E. Ten random-
ly selected fields under the magnification of 100× were 
assessed from each lung. Fifteen lines were randomly 
placed on the lung sections, and the number of inter-
cepts crossing the alveolar wall was counted. The MLI 
was calculated from the length of the lines multiplied by 
the number of the lines divided by the sum of all count-
ed intercepts. 

Immunohistochemistry
A VectaStatin rabbit ABC Elite kit (Vector Laboratories, 
Burlingame, CA, USA) was used for immunostaining. 
Tissue sections (5 μm) were deparaffinized, endogenous 
peroxidase was blocked with 1.4% H2O2 in methyl alco-
hol for 30 minutes, and nonspecific binding was blocked 
with 1.5% normal rabbit serum for 30 minutes. The sec-
tions were incubated with rabbit polyclonal anti-mouse 
NLRP3-inflammasome antibody (1:500; Abnova, Tai-
pei, Taiwan) at 4°C for 16 hours. After washing with 
Tris-buffered saline (TBS), the sections were sequen-
tially incubated with biotinylated rabbit anti-rabbit im-
munoglobulin G (H+L) (1:200; Vector Laboratories) and 
avidin-biotin peroxidase complex (1:50; ABC kit, Vector 
Laboratories) for 30 minutes. The color reaction was 
developed with 3,3′-diamino-benzidine tetrachloride 
(Zymed Laboratories, South San Francisco, CA, USA), 
and Harris hematoxylin was applied as a counter stain. 

Western blotting
A 10 μg of protein from lung tissue sample was electro-

phoresed on 15% polyacrylamide gels using a discon-
tinuous system. The proteins were transferred to ni-
trocellulose membranes at 120 V for 40 minutes. After 
blocking in 5% skim milk and 0.1% NP40 in TBS for 
2 hours at room temperature, the membranes were in-
cubated with a rabbit polyclonal anti-mouse NLRP3-in-
flammasome (Abnova) or rabbit monoclonal anti-mouse 
caspase-1 (Abcam, Cambridge, MA, USA) primary anti-
body. The membrane was incubated with horseradish 
peroxidase (HRP)-conjugated anti-rabbit immunoglob-
ulin G (1:2,000 dilution) for 1 hour at room temperature. 
The target protein was detected using an enhanced che-
miluminescence reagent (Amersham Pharmacia Bio-
tech, Little Chalfont, UK).

RESULTS 

IL-1β secretion by RAW 264.7 cells after stimulation 
with CSE and DEPs
IL-1β concentrations in the supernatants of RAW 264.7 
cells were measured after stimulation with 10% CSE 
and DEPs (Fig. 1). CSE and DEP exposure led to marked 
IL-1β secretion. To evaluate the effects of oxidants 
and caspase-1 on IL-1β secretion, cells were incubated 

IL
-1
β 

(p
g/

m
L)

Medium

Medium
NAC
Z-YVAD-FMK

CSE

a

a

a

DEP LPS

160

140

120

100

80

60

40

20

0

Figure 2. Interleukin-1β (IL-1β) secretion by RAW 264.7 cells 
after 24-hour stimulation with cigarette smoking extract 
(CSE) and diesel exhaust particles (DEPs) in the presence or 
absence of N-acetylcysteine (NAC) or a caspase-1 inhibitor. 
CSE-, DEP-, and lipopolysaccharide (LPS)-induced increases 
in IL-1β levels in the supernatants of RAW 264.7 cells were 
significantly decreased by NAC and Z-YVAD-FMK. ap < 0.01 
vs. NAC and Z-YVAD-FMK.
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with the antioxidant NAC and the caspase-1 inhibitor 
Z-YVAD-FMK for 24 hours. The IL-1β concentrations 
were decreased significantly in the supernatants of RAW 
264.7 cells by the antioxidant and the caspase-1 inhibitor 
(p < 0.05) (Fig. 2).

NLRP3-inflammasome and caspase-1 protein levels 
in RAW 264.7 cells after stimulation with CSE and 
DEPs
We evaluated whether NLRP3-inflammasome and 
caspase-1 levels in RAW 264.7 cells were upregulated by 
stimulation with CSE and DEPs by Western blotting. 
NLRP3-inflammasome expression was increased by 
stimulation with DEPs and CSE and inhibited by the 
antioxidant NAC (Fig. 3A). Caspase-1 expression was up-
regulated by CSE and DEPs and decreased in the pres-
ence NAC (Fig. 3B). 

Cellular profiles, histology, and morphometric anal-
ysis of an elastase-induced emphysema model 
The total cell count in BAL fluid was not different between 
the control group and elastase-induced emphysema 
group. The lymphocyte numbers significantly increased 
in the emphysema group compared with the control 
group, but the numbers of other cell types were not dif-
ferent between the two groups (Fig. 4). The architecture of 

alveolar septa and the airspace was well preserved in the 
control group (Fig. 5A). However, in the elastin-induced 
emphysema group, alveoli were enlarged (Fig. 5B). The 
MLI was significantly higher in the elastin-induced em-
physema group than in the control group (90.4 ± 6.7 μm 
vs. 23.6 ± 2.2 μm, p < 0.01) (Fig. 5C). 
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Figure 4. Total cell and inflammatory cell counts in bron-
choalveolar lavage f luid from the control and emphysema 
groups. Lymphocyte numbers were significantly increased 
in the emphysema group compared with the control group. 
The numbers of other cell types were not different between 
the two groups. Total, total cell count; Mac, macrophages; 
Neut, neutrophils; Lym, lymphocytes; Eos, eosinophils. ap < 
0.05 vs. the control group. 

Figure 3. Western blot analysis of (A) nucleotide-binding oligomerization domain-like receptor (NLR) family members con-
taining the pyrin domain (NLRP3)-inflammasome and (B) caspase-1 levels after stimulation with cigarette smoking extract 
(CSE) and diesel exhaust particles (DEPs). (A) NLRP3-inflammasome levels in RAW 264.7 cells were increased following stim-
ulation with CSE and DEP for 24 hours, but were decreased by N-acetylcysteine (NAC) application. (B) Caspase-1 levels in RAW 
264.7 cells were increased following stimulation with CSE and DEPs for 24 hours. This expression was decreased by NAC. Li-
popolysaccharide (LPS) was used as positive control. 
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IL-1β secretion from lung tissue explants after stim-
ulation with CSE and DEPs
Murine lung tissue explants from the normal and elas-
tase-induced emphysema groups were incubated with 
CSE and DEPs for 24 hours; the IL-1β levels in super-
natants were then measured. Similar to RAW 264.7 cells, 
CSE and DEPs increased the secretion of IL-1β by the 
cultured lung tissue explants obtained from the normal 
(Fig. 6A) and elastase-induced emphysema groups (Fig. 
6B). IL-1β secretion by CSE and DEPs increased more 
in the elastase-induced emphysema group than in the 
normal group (CSE: 309 ± 19 pg/mL vs. 151 ± 13 pg/mL, 
respectively, p < 0.05; DEP: 350 ± 24 pg/mL vs. 281 ± 15 
pg/mL, respectively, p < 0.05). NAC and Z-YVAD-FMK 

significantly inhibited the NAC- and DEP-induced IL-
1β secretion in both the normal and elastase-induced 
emphysema groups (Fig. 6).

Immunohistochemical staining of the NLRP3-in-
flammasome in lung tissues after stimulation with 
CSE and DEPs
NLRP3-inflammasome expression was detected in lung 
tissue explants after 24 hours of stimulation with CSE 
and DEP. The NLRP3 expression was increased by CSE 
and DEP in both the normal (Fig. 7A) and elastase-in-
duced emphysema group (Fig. 7B). This expression was 
suppressed by NAC in both the normal and emphysema 
groups. 
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Figure 5. (A, B) Hematoxylin-eosin staining of the lung (×40) and (C) the mean linear intercepts of both groups. (A) The ar-
chitecture of alveolar septa and the airspace was well preserved in the control group, and (B) the alveoli were enlarged in the 
elastin-induced emphysema group. (C) The mean linear intercept was significantly higher in the elastin-induced emphysema 
group than that in the control group. ap < 0.01 vs. the control group. 

Figure 6. Interleukin-1β (IL-1β) secretion from lung tissues after 24 hours stimulation with cigarette smoking extract (CSE) 
and diesel exhaust particles (DEPs). (A) CSE and DEP exposure increased IL-1β secretion in both the normal and (B) elastin-in-
duced emphysema groups. N‑acetylcysteine (NAC) and Z-YVAD-FMK inhibited the NAC- and DEP-induced IL‑1β secretion 
in both the normal and elastin-induced emphysema groups. LPS, lipopolysaccharide. ap < 0.05 vs. Z-YVAD-FMK, bp < 0.05 vs. 
NAC and Z-YVAD-FMK.
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DISCUSSION

The present study showed that the NLRP3-inflammasome 
was upregulated by DEPs and/or CSE, and this upregula-
tion was inhibited by the antioxidant: NAC. The exact role 
of NLRP3-inflammasome is unclear in the pathogenesis 
of AECOPD, but oxidative stress may be involved because 
the antioxidant NAC inhibited the DEP-induced increase 
in IL-1β levels in a macrophage cell line, and because the 
NLRP3-inflammasome overexpressed in the elastase-in-
duced emphysema model. Other animal studies have sug-
gested a relationship between DEPs and oxidative stress. 
Intratracheal instillation of DEPs increased the levels of a 
superoxide producer (nicotinamide adenine dinucleotide 
phosphate cytochrome P-450 reductase) and decreased 
those of a superoxide scavenger (superoxide dismutase) 
in mice [21]. Although few reports have been published 
regarding the direct demonstration of inflammasome 
activation in the lung tissues from patients with COPD 
at acute exacerbation, activation of NLRP3-inflam-
masome is likely a key player in the pathogenesis of 
acute exacerbations. The NLRP3-inflammasome was 
upregulated during nontypeable H. influenzae-induced 
inflammation in respiratory cells and human lung tis-
sues [11]. In the present study, we found that the NL-

RP3-inflammasome was upregulated by treatment with 
DEPs in the lung tissue explants of murine elastase-in-
duced emphysema, which mimics human emphysema. 
These findings suggest the NLRP3-inflammasome play 
an important role in DEP-induced inflammation in 
elastase-induced emphysema animal model.

It is suggested that a two-step reaction is required 
for the full activation of NLRP3-inflammasome [22,23]. 
First step is ‘priming’ which upregulate pro-IL-1β, pro-
IL-18, and the components of inflammasome. Second 
step is ‘activation’ which is the assembly of the compo-
nents into inflammasome structure and production of 
proinflammatory interleukins. The exact mechanism 
of activation of inflammasome is unknown, but, a lot of 
stimuli like microbes and microbial substances, LPS, are 
found to activate NLRP3 in the presence of adenosine 
triphosphate [24]. By these reasons, we used LPS as posi-
tive control for activation of NLRP3 in the present study. 

Air pollution is a known precipitating factor of AE-
COPD [25,26]. Epidemiologic studies have support-
ed the role of air pollutants, such as nitrogen dioxide 
(NO2), sulfur dioxide (SO2), particulate matter smaller 
than 10 μg (PM10), and black smoke particulate matter, 
in the increase in respiratory symptoms and mortality 
rate in COPD patients [27]. Exposure of healthy persons 
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Figure 7 .  Immunohistochemica l 
staining of the nucleotide-binding 
oligomerization domain-like receptor 
(NLR) family members containing 
the pyrin domain 3 (NLRP3)-inf lam-
masome in lung tissues after 24-hour 
stimulation with cigarette smoking 
extract (CSE) and diesel exhaust parti-
cles (DEPs) (×100). (A) NLRP3-inf lam-
masome expression was increased 
by CSE and DEPs in both the normal 
and (B) elastin-induced emphysema 
groups. NLRP3-inf lammasome ex-
pression was suppressed by N‑acetyl-
cysteine (NAC) in both the normal and 
emphysema groups. LPS, lipopolysac-
charide.

www.kjim.org


       

872 www.kjim.org https://doi.org/10.3904/kjim.2016.033

The Korean Journal of Internal Medicine Vol. 32, No. 5, September 2017

to diesel exhaust results in an increased number of neu-
trophils in sputum [28], and an in vitro study showed 
an increase in the levels of IL-1 and neutrophil-related 
cytokines, such as IL-8 and granulocyte-macrophage 
colony-stimulating factor, in human airway epithelial 
cells [29,30]. Urban particulate matter including dust 
and emission particles has been shown to activate the 
NLRP3-inflammasome in airway epithelium [31]. In the 
present study, the IL-1β level was increased by treatment 
with DEPs in both cell lines and an elastase-induced 
emphysema model. These findings are compatible with 
alterations in IL-1β levels in H1N1 virus-associated AE-
COPD in animal models [32] and in a cohort of patients 
with COPD [33].

Intratracheal administration of PPE can induce acute 
lung inflammation due to increased secretion of inflam-
matory cytokines, such as IL-1β and IL-6, during the 
acute stage [34]. However, in the present study, we euth-
anized the mice at 3 weeks after intratracheal instillation 
of elastase, and the neutrophil count in BAL was similar 
in the emphysema and saline-treated groups. Therefore, 
elastase had no marked effect on the expression of the 
NLRP3-inflammasome and lung inflammation.

Our data demonstrated that CSE increased IL-1β 
secretion in the emphysema model; however, in the 
control group, IL-1β secretion did not attain the level 
reached in the emphysema mode (Fig. 6). This finding 
may be due to secretion of various cytokines by activated 
alveolar macrophages following cigarette smoke expo-
sure [35]. We expected DEPs to show a pattern of IL-1β 
secretion similar to CSE; however, DEPs increased IL-1β 
levels to a degree similar to that in both the emphysema 
and non-emphysema models (Fig. 6). A study involving 
intratracheal instillation of DEPs in an elastase-induced 
emphysema model showed no difference in the IL-1β 
level between the emphysema and control groups [34], 
which is in agreement with our findings.

Caspase-1 levels are increased in the lung tissues of pa-
tients with COPD compared with those from nonsmok-
ers [36], serving as indirect evidence of the role of the 
inflammasome in the pathogenesis of COPD. However, 
no reports involving direct measurement of inflamma-
some expression in COPD lung tissues are available. 
Thus, in the present study, the elevated inflammasome 
levels induced by DEPs in both epithelial cell lines and 
an elastase-induced emphysema model may be related 

more closely to AECOPD than its pathogenesis. 
The limitations of this study were as follows. First, ex-

periments using NAC should be interpreted with cau-
tion. NAC may detoxify other reactive DEP constituents 
that could trigger inflammatory reactions and suppress 
reactive oxygen species, which are important media-
tors in most signal transduction pathways [37,38]. Thus 
DEP-induced overexpression of the NLRP3-inflam-
masome may be related to factors other than oxidative 
stress. Second, the normal ambient DEP concentrations 
are typically lower than those used in this study. We at-
tempted to generate model of DEP-induced AECOPD, 
but inducing lung inflammation using a low concentra-
tion of DEPs is problematic. Other studies with human 
volunteers have also used a DEP concentration higher 
that the ambient [39,40]. Third, we did not measure lung 
mechanical parameters such as enhanced pause (Penh) 
and total respiratory systemic resistance. Although we 
did not measure lung mechanics, the increased MLI 
could be a good indicator of emphysema. Fourth, the 
concentration of DEP used in the present study is high-
er than those in ambient air. We tried to reduce the dose 
of DEP in the present study, but we should choose high-
er concentration of DEP by the finding of the dose-re-
sponse curve shown in Fig. 1. 

In conclusion, these data suggest that the NLRP3-in-
flammasome was activated by challenge with DEPs in 
an elastase-induced emphysema model. Furthermore, 
an antioxidant inhibited the DEP-induced activation of 
the NLRP3-inflammasome. 

KEY MESSAGE

1.	 The nucleotide-binding oligomerization do-
main-like receptor (NLR) family members 
containing the pyrin domain 3 (NLRP3)-inflam-
masome is activated by diesel exhaust particles 
in ex vivo tissue explants from elastase-induced 
emphysema animal model, and this activation 
is inhibited by N‑acetylcysteine. 

2.	 Diesel exhaust particles could be an important 
cause of acute exacerbation of chronic obstruc-
tive pulmonary disease through activation of 
NLRP3-inflammasome. 
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